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Figure 1: Escher, M.C. Hand with Reflecting Sphere (Self-Portrait in Spherical
Mirror). 1935. Lithograph, 31.8 x 21.3 cm.



Quick reference

Mundane space In two dimensions, a point mass creates a gravitational po-
tential of

O(r) = —mlog|r —ry|.

Here, r( is the location of the point mass, m is its mass, and r is any point in
the universe.

Narnian portals In two dimensions with a narnian portal between universes
A and B, a point mass in universe A creates a gravitational potential:

(I)A(r) =—mlog|r—ro| + %mloglrl

(DB(r) = —mlog|r+ % + %mloglrl

Here, ry is the location of the point mass, m is its mass, a is the radius of the
circular portal at the origin, ®* and ®® are the potentials throughout universes
A and B respectively, and r is any point in that universe.

Gladosian portals In two dimensions with a gladosian portal, a point mass
creates a gravitational potential:

O(r,0)=-m )_ log(cosh(t — 11 —2n70)—cos(c — 1))

n=-—00

+m ) log(cosh(r —2n7() - coso)
n#0

Here, (1,0) is the location of a point specified in bipolar coordinates, (11,01) is
the location of the point mass and m is its mass, and 7¢ is the radius of the two
circular portals expressed as a contour of constant 7 = +71y.

Near a planetary surface Near a planet’s surface, with a pair of stacked
gladosian portals at different altitudes, the gravitational potential becomes:

csinhTt c x "o
d(r,0)=—— - —71-2¢ Z ——sinh(nt)cos(no)
cosht—coso 19 =1 sinh(n 7o)

Here, the first term is the usual gravitational potential that varies linearly
with altitude, and the rest is a harmonic correction to account for portal geome-
try. The straight-line separation between the foci® is 2c.

Fascinatingly, the rims of both portals are isopotential surfaces ®(+79,0) =0
all the way around.

11 forget if it’s the foci or the portal centers; they’re slightly displaced from one another.



1 Narnian portals

Imagine you open up a portal between two universes, allowing light and matter
to travel between them. The portal behaves like a window, because photons from
the other universe travel through it and impinge on your eyes. And it behaves
like a door, because matter can traverse the portal, too.

What about gravity? If you have a massive object on the other side of the
portal, what kind of gravitational force does it exert on this side? The aim of this
article is to derive the unique law of Newtonian gravity for conjoined universes
with a portal between them.

In short, the results are as follows:

1. Gravity flows between universes. Objects on one side are indeed at-
tracted into the portal by massive objects on the other side.

2. Portals decrease apparent mass. Viewed from very far away, an object
of mass M in a world-with-a-portal exerts the same gravitational field that
an object of mass M/2 ordinarily would have. This M/2 field is the same on
both sides of the portal; it is exactly as if the portal siphons gravitational
flux so that each side gets half, which makes objects seem gravitationally
half as powerful.

3. Gravity behaves normally up close. Up close, an object of mass M ex-
erts the expected amount of gravitational force. It doesn’t matter whether
you're in a world with a narnian portal or not; you can’t tell up close.

4. Objects are attracted toward portal images. It is like holding a mir-
rored ball in your hand and seeing the whole world captured in a spherical
image (Figure 1): the portal appears to contain the entirety of the neigh-
boring universe just under its surface. When there’s a mass in the other
universe, objects in this universe are attracted toward the specific image
point under the surface of the portal where the mass seems to be.

Formally, the equation governing gravity for narnian portals is:
d4(r) =loglr—rol-1ilog|r|

B (r) =10g‘r+ % - %loglrl

In words: you have two universes A and B which each look like the 2D
plane?. Around the origin of both planes, you cut out a circular portal of ra-
dius a, then glue the two universes together along those matching circular rims
to make a portal between them.

If you put a mass at point ry in universe A, it creates a gravitational poten-
tial ®4 throughout its own universe, and a potential ®? throughout the other
universe. (Objects fall from high to low gravitational potential.)

2These gravitational portal equations are for 2D flatland; they look different and more compli-
cated in 3D.



In its own universe, the mass’s gravitational potential consists of the log|r —
ro| term—which is the ordinary 2D gravitational attraction pulling an object at
position r toward the mass at position ro—minus a %loglrl term, which is the
attenuation of the field due to the portal at the origin. Up close to the mass,
the first term dominates and so the potential looks normal, like log|r —rg|. Very
far away, r becomes large enough that r —rg = r, and so the potential looks like
% log |r — ro|—half of its typical value.

In the neighboring universe B, there are also two forces at play: objects are
attracted into the portal by the mass in universe A, but the attractive force is
attenuated by a countervailing force from the portal at the origin. The specific
point —% is the “portal image” of the mass: when you gaze into the portal in
universe B, the mass from universe A appears to be just below the surface of the
portal at this point. Objects throughout universe B are attracted into the portal
just as if the mass were actually stationed below the surface there.

The mathematics of narnian portals

In the sections that follow, we’ll define the formalism and prove the gravitational
law I just described.

Two planes with a hole in the middle We start with the ordinary Eu-
clidean plane and remove a disc of radius a centered at the origin, forming a
space we'll call 2. By gluing two copies of & along the disc boundary in an ap-
propriate way, you create a portal between the two universes such that entering
the disc in one universe causes you to exit the disc in the other universe while
keeping the same heading. In polar coordinates, the appropriate corresponding
points to glue together are {(a,0); ~ {a,0 + 1) for all 6.

Gravitational potential An object with mass creates a gravitational poten-
tial throughout all of space. Gravitational potential is a number ¢(r) assigned
to each point r in space, where gravitational attraction causes objects to fall
from high to low potential. Gravitational potentials superimpose, so you can
determine the combined gravitational effect of two objects by adding their grav-
itational potential fields together.

When we say we want to find out how gravity works in a universe with
portals, what we mean is we want to know what gravitational potential field
objects create when they live in a world with portals.

You can find gravity by solving Poisson’s equation There is a differential
equation you can solve in order to determine the gravitational potential in any
space. If you put an idealized object of mass m at a single point ry, it creates
a potential field ¢(r) at every point in space, and this field must obey Poisson’s
equation:

V2p(r) = mb(r —ro)



*¢ , ¢
0x? ' 0y2’
the dirac delta function, which is zero at every point r except r =ry.

As you can tell from the derivatives, Poisson’s equation is a second-order
differential equation. By solving this equation for the unknown function ¢(r),
we can find out what potential an object of mass m and position ry creates in this
portal space. (And because potential fields add together, this tells you everything
you need to know about how gravity behaves in portal space no matter what
arrangement of masses you have.)

Here, V2¢ is shorthand for the second derivatives + and 6(r —rp) is

Ordinarily, gravitational potential behaves like log|r —ry| If you solve
Poisson’s equation in the ordinary plane, you get the basic 2D gravitational po-
tential:

$o(r) =logr —ro|

We’ll keep this in mind as a template solution for our portal world. Although
the potential in portal world may be different, knowing the ordinary 2D solution
may be useful as a starting point.

Three boundary conditions Here are three common-sense requirements
that I think the gravitational potential ought to satisfy in our portal space:

1. Corresponding points on the portals must have the same potential. (After
all, they’re glued together, so they should match.)

2. Corresponding points on the portals must have the same radial flux d¢/or.
(Potential should change smoothly as you cross the seam)

3. The potential should change smoothly when a massive object goes through
the portal. (The gravitational potential shouldn’t suddenly snap to a new
value as a new object crosses over.)

These requirements are boundary conditions; in our case, they’ll help us find
solutions to Poisson’s equation that respect the topology of our space, i.e. that
take into account the presence of the portal.

Potentials for two universes We've placed a point mass m at location ry in
our first universe. This creates a potential field we’ll denote by ¢4 throughout
this universe A, and a potential field ¢® throughout the neighboring universe B.
Our job is to determine the unknown potentials ¢4 and ¢? by solving Poisson’s
equation.

In universe A, Poisson’s equation is:

V2pA (r) = mé(x — )
In universe B, there isn’t any mass at all, so the equation is just

VZpB(r)=0



Remember that 6(r —rg) is zero everywhere except the single point where
the mass is, so these equations are not so different—they’re actually exactly the
same but for that one point ry in universe A.

We can build the potential out of harmonic building blocks What kinds
of functions f satisfy the differential equation V2f = 0 anyways?

In polar coordinates, the function f(r,0) = log(r) satisfies this differential
equation. So do the functions f(r,0) = r" cos(nf) and f(r,0) = r" sin(nf) for any
integer n.

And in fact, according to fourier analysis, these so-called harmonic functions
are the building blocks for any solution to the equation V2f = 0. In particular:

1. Every well-behaved function that satisfies the differential equation V2f =
0 can be written as a weighted sum of these harmonic functions.

2. The weights are unique—if you can build a function f as a weighted sum
of harmonic functions, there’s exactly one set of coefficients that can do it.

So, assuming optimistically that our potentials are well-behaved, we can
write them as a weighted combination of harmonic functions with unknown
weights. And by applying our common-sense boundary conditions, we can solve
for the weights and determine the potentials exactly.

A sketch of the solution

1. Assume the solution has the form ¢A(r) = ¢o(r) + yA(r) and ¢B(x) = yB(r),
where ¢g is the gravitational potential of a point mass in ordinary 2D
space, and ¥(r) is a harmonic correction factor to make sure that ¢ satis-
fies the boundary conditions (shape requirements) of our space.

2. Assuming y(r) is the most general harmonic function, our potential looks
like:

(o @) o0
wA(r):A~1og|r—r0|+C10g(|r|)+ Z A, r"cos(nf)+ Z B,,r"sin(n0),

n=-—o0o n=-—o0o

o0 o0
wB(r) =Dlog(|r|) + Z E,r"cos(nf)+ Z F,r"sin(n0),
n=—o00 n=-o0
where all the A; and B; and C and D and E; and F; are constants we need
to determine.

3. Because of Gauss’s law, the potential has to look like ¢pg from far away.
This means that all the r” terms in our correction must have a negative
exponent so they go to zero.

4. Take the fourier transform of log(|r —rg|) to express it in terms of har-
monic functions. Then apply the first boundary condition and match up
the coefficients. This gives you equations relating the coefficients to one
another.



5.

7.

Take the derivative of ¢ in the normal (i.e. radial 7) direction. Then apply
the second boundary condition and match up the coefficients. This gives
you further equations relating the coefficients. You can now solve for al-
most all of them.

The remaining major unknown is a factor determining how much flux is
shared between the two universes. Requiring the third boundary condition
shows that the flux is shared symmetrically, half and half.

We find
oA(r) = —-mlog|r—ro| + %mloglrl

o) = —mlog’r+ % + %mloglrl

2 Gladosian portals

Imagine you create a portal joining two parts of your universe together so you
can step between faraway places in an instant. There are some important ques-
tions about how gravity behaves here:

1.

What happens if there’s a heavy object like a planet on the other side of
the portal—does it gravitationally draw you in?

Can you create endless acceleration by putting one portal high up and the
other low down and falling between them forever?

If you arrange the portals so that you can see yourself, do you exert gravi-
tational attraction on yourself through the portal?

And the answers are:

1.

2.

Gravity flows between universes. Yes, objects on opposite sides of the
portal gravitationally attract one another.

Like two mirrors facing one another, portals create nested reflections of
the entire universe underneath their surface. Although there’s nothing
“under the surface” of a portal, gravity behaves just as if those images are
real and have mass.

. Portals don’t cheat energy. You can’t create endless acceleration with

portals. When you place one high and one low, several things happen:
first, they stretch the gravity field between them like taffy so that the
space between them is nearly gravitationally level and does not accelerate
you. Second, they pucker the space around them so that climbing into the
bottom portal and out of the top portal is an uphill climb that takes just
as much formal work as climbing a ladder between the two portals.

The short proofis that because we’ve found a (single-valued) potential, the
associated force must conserve energy.

Objects don’t attract themselves. Objects are not attracted to them-
selves through portals. Because spaces with portals are curved, unlike
ordinary flat space, it is possible to see your own self through a portal and



point at yourself. But the position you are pointing at isn’t different from
the one you’re standing in. There is no force pulling you from here to there
because here and there are the same location.

The mathematics of gladosian portals

While a narnian portal joins two universes together, a gladosian portal joins one
universe to itself. Take the ordinary euclidean plane and cut out two circles from
it. Then glue the circular rims of the holes to each other. (If you imagine the
euclidean plane as a sheet of paper with two circles cut out of it, fold the paper
so that the circles overlap and then glue the holes together.)

We can solve for the gravitational potential in this space, too, using poisson’s
equation:

V2p(r) = m(r —ro)

Proof sketch

1. Use bipolar coordinates. Bipolar coordinates (see Wikipedia) (r,0) are
the ideal coordinate system for representing a system with two portals.

2. Portal circles are constant contours. You can choose your coordinate
system so that the two circles are located symmetrically on the x-axis cen-
tered on x = +d and with radius a. In bipolar coordinates, the left circle
is the contour 7 = —7¢ and the right circle is the contour 7 = +7¢. This
means that all of reality on the exterior of the two portals is in the range
—Tog=T=<=+Ty.

3. The laplacian is simple in bipolar coordinates. The equation VZ¢ =0
holds throughout all space except at the point mass. Although V2 looks
complicated in bipolar coordinates, the equation V?¢ = 0 is much simpler.

. . . . 2 2 . N
In bipolar coordinates, V2 is zero just when 367 + ;7 is zero. (This is
because bipolar coordinates are “conformal”.)

4. You mustn’t glue portals together backwards. What’s the equation
gluing the two portal rims together? We have a few choices, and if we
glue them backwards it will warp space. The correct gluing is to make
(+79,0) ~ (—T9,0) for every . This makes the coordinate rectangle [-7¢, +7¢]x
[0,27] into a torus (with a hole at the origin).

If you glue it the wrong way like I did when trying out, you do (+7¢,0) ~
(-Tg,—0) and space becomes a klein bottle. This is undesirable because
if you complete a loop through both portals when they’re set up like this,
you flip into a mirror image version of yourself.

5. The portal rims must have matching potential. Unlike the narnian
case, we only need two boundary conditions to respect this gluing: first,
the potential at corresponding points on the portal rims must be the same.
Second, their flux must be the same.



6.

10.

11.

12.

A pair of portals creates infinite refracted images. When we glue the
portal rims together and make +1 equivalent to —7¢, we make 7 equiva-
lent to 7+ 27g and 7+ 471 and 7 + 2n71).

According to the method of images, we can see fictitious images of our
point mass (1,,,0,,) at (1, +2n19,0,,) for every integer n. And gravita-
tional potential behaves exactly as if there really are masses in those lo-
cations. Those masses seem to be “in the interior of the portal disc” where
nothing actually is—we cut out those discs to make the portal—but the
math behaves as if they are.

. The infinite sum needs to be regularized. And so the gravitational

potential ¢ is an infinite sum of the gravitational contributions of all the
images in all the portals. Each one contributes a potential term ¢;(r) = [r—
ro|. Unfortunately, the infinitely many reflections make the total potential
go to infinity.

To solve this problem, we apply regularization. We know that you can
add a constant to potential without changing its physical properties. We'll
make sure that as we take the sum of more and more reflections, we’ll sub-
tract off an adaptive constant so that the overall potential doesn’t become
infinite.

. Regularization creates sink charges. The method of regularization

creates “sinks” of negative mass.

I will note cryptically that positionally they are the portal reflections of
the vanishing point (r = 0,0 = 0). Understanding this statement isn’t nec-
essary for the derivation.

. Find the harmonic building blocks. As we did before with the fourier

transform. Note that because the bipolar angle ¢ is periodic, we get terms
like exp(k o).

Apply the boundary conditions

Hyperbolic trig identities to the rescue. The sum of a bunch of trans-
lated logarithms can be more compactly written in terms of cosh and sinh.

There are also compact ways to rewrite them in terms of the jacobi theta
function 9, which is a special function for capturing the behavior of sys-
tems that are periodic in two directions, like toruses or crystal lattices
or, in our case, (T +2mTg,0 + 27nn). But I prefer hyperbolic trig functions
personally.

We find

O(r,0)=-m ) log(cosh([t —71]-2n7¢) - cos(oc — 1))

n=—00

+m )_ log(cosh(r — 2n7() — cos )
n#0



Here, (1,0) is the location of a point specified in bipolar coordinates, (t1,071)
is the location of the point mass and m is its mass, and 7¢ is the radius of
the two circular portals expressed as a contour of constant 7 = +7.

Figure 2: An orange point mass sits in the plane near a pair of gladosian
portals. The gravitational potential (shown as a heat map) is warped by the
presence of the portals, leaking in one and out the other. Like two mirrors
facing each other, the portals create imaginary reflections of the point mass
(orange) and the sinks at infinity (blue); gravitational potential behaves as if
those images are real.

The reflections contain concentric circles that reflect the whole world. The
outer circle represents one portal, the inner circle represents the other, and
between them is all of space. In particular, you can see a reflection of the orange
mass near one of the circles, where it appears in real life. And there is a blue dot
acting as a matter sink; its position is a reflected vanishing point representing
things infinitely far away.

2.1 Portals near a planetary surface

In a 2D world, if you're very close to a planet’s surface, you experience gravita-
tional potential proportional to your altitude; call it ¢, (x,y) = +g - y. If you had
a portal, you could go from very low to very high in an instant. Do portals let
you cheat energy conservation?

They don’t. Let’s set up a vertically stacked pair of portals and solve poisson’s
equation for the resulting gravitational potential.

If you use bipolar coordinates with the usual transformation, then they're
stacked in the horizontal (x) direction; we can either use a different conversion
or declare that down is in the —x direction. Also unlike before when we set



7o, which controls both the size of the portals and their separation with a single
number, we can write 7y terms of the portal radius a and the separation between
foci 2¢ and set those directly. This allows us to experiment with different degrees
of portal separation c.

Using the same strategy as we did in the previous section, we’ll assume that
gravitational potential is equal to its usual linear-downward potential ¢, (x,y) =
+g - x, plus a harmonic correction ¢(x,y) that accounts for the portal warping.

Using fourier decomposition and applying the two boundary conditions (same
potential and flux around the portal rims), we find:

csinht c x —nro
d(r,0)=——— - —7T-2¢ Z ———sinh(nt)cos(no)
cosht—coso 19 =1 sinh(n7)

The first term is just +g-x expressed in bipolar coordinates. The second term
levels the field between the two portals to place them at the same potential and
fully neutralize the effect of the gravity well. The remaining terms create a
gravitational lensing effect so that close up to the portals, gravity radially in-
ward/outward instead of down toward the planet; I believe this is what satisfies
the matching-flux boundary condition.

The rotationally-symmetric gravitational puckering around both portals is
fascinating. It means that it requires uphill work to approach the lower portal
from any direction, and uphill work to leave the upper portal from any direction.
That additional uphill work is equivalent to the amount of work it would take
to cross the distance between the two portals in free space, exactly canceling the
gravitational benefit of taking a portal shortcut. You can’t cheat conservation of
energy using portals.



Figure 3: 2D gravitational potential near a planetary surface with stacked
Gladosian portals. The planetary surface is along the bottom edge of the im-
age, with ordinary gravity pointing down.



3 What’s next?

Here are some ideas for fun things you might try next:

1. Portals in 3D. It’s possible to solve poisson’s equation in 3D; they involve
the spherical harmonic functions (the same functions that give atomic or-
bitals their shape!). Though because you lose the conformal properties of
flatland, the expressions for 3D gravitational potential are not so elegant;
they mix fourier modes. In three dimensions, you remove two spheres
from three dimensional space and glue the boundaries together — it is
very important that portals and their universes have the same dimension;
otherwise you get sharp singularities. Gladosian portals use bispherical
coordinates, the analogue of bipolar coordinates in 3D.

2. Relativity and spacetime. The mathematics in this article is sort of a
fun anachronistic clash — all of the gravity is purely newtonian, but it
is happening in curved spaces. It would be interesting to do portals in a
setting where gravity is curved spacetime. Then there are questions about
time dilation and so on — I’ll bet you can’t cheat reality there either.

3. Faraway Gladosian portals become Narnian portals. I suspect there’s
a sense in which if you take the limit of a gladosian portal, pinning the
point mass relative to one portal and sending the other portal to infinity,
you get a narnian portal. That is, the portals are so far apart as to be in
separate universes.

I think the math on this is a little tricky — intuitively, the infinitely
many reflections of the portal get crowded into the center until there’s
only one reflection per portal. But those reflections are full of alternat-
ing +m masses and so you'd probably have to be careful about how you
regularize while taking the limit.

But it would be interesting to prove.

4. Portals and orbits. If you fix a point mass in place near a pair of gladosian
portals, both it and its mirror image seem to produce a gravitational field.
What kinds of orbits do test masses make?

I think this is related to the (solvable!) restricted version of the three
body problem that Euler solved, where two of the three masses are fixed
in place. Here, the point mass and its reflection are fixed in space.



Figure 4: Each gladosian portal contains a picture of the whole infinite plane as
seen from its counterpart portal’s point of view. In this illustration, the colorful
grid and the symmetry-free letters provide visual landmarks to show what con-
nects to what. Note, for example, that the inside rim of each portal reflects the
outside rim of the other portal.



