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Abstract

Why do planets have seasons? How, quantitatively, does the
amount of planetary tilt a�ect how much daylight you get? What
shape does a sundial’s shadow trace throughout the day? Given
a time and place on Earth, what direction is the sun? What is the
zodiac like on other planets? How do you de�ne reasonable coor-
dinate systems and calendars starting from scratch on the surface
of a planet?

I answer questions like these from �rst principles, in a quan-
tiative, purely geometric way. �ere’s no physics at all—no grav-
ity, no atmosphere—and only very simple geometry—spheresmov-
ing in uniform circular orbits. �ese simpli�ed answers provide
intuition to explainwhatwe see in the heavens andwhatwemight
see on other worlds.
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Note 1: Welcome! I intend for this document to be a useful reference, where
each separate section is self-contained enough that you can read it and learn
something newwithout having to read everything prior or brush up on notation.
On the other hand, you can also read it straight through, cumulatively.

Note 2: Who should read this? I think the geometric intuition provided here
can be useful to anyone, and I use a lot of pictures to get the point across. If you
do want to follow the detailed calculations, it will help to know about vectors
and trigonometry—that is, about sine and cosine, how to multiply matrices, and
what a cross product is.

Note 3: �is is an incomplete α version of this document. Much useful
material is here (around ��y pages worth, including diagrams), but a lot of other
interesting material has yet to be assembled. If you �nd it useful and/or you
would like to see more, please let me know.
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0.1 �ick reference

Rodrigues’s rotation formula. Suppose you revolve a vector ~v around
the axis ~k by an angle of θ, according to the right hand rule. Rodrigues’s
rotation formula tells you how to compute the end result as a linear
combination of the vectors ~v, ~k× ~v, and ~k:

~vnew = ~v cos θ + (~k× ~v) sin θ + ~k(~k · ~v)(1− cos θ)

Trigonometric identities If you de�ne the trigonometric functions
〈cos θ, sin θ〉 to be the coordinates of the point 〈1, 0〉 a�er it has been
rotated counterclockwise by angle θ, and you remember the formula for

a rotation matrix
[
cos θ − sin θ
sin θ cos θ

]
, you can easily derive many trigono-

metric identities.
For example, because you can rotate by angle α+β by rotating �rst

by α, then by β, you �nd by matrix multiplication that:

cos (α± β) = cosα cosβ ∓ sinα sinβ

sin (α± β) = sinα cosβ ± sinβ cosα

�esubsolar point. �e subsolar point is the point where the line be-
tween the sun and a planet intersects the planet’s surface. �e noonday
sun is directly overhead at that latitude, which I denote as β.

On un-tilted planets, the subsolar point is always at the equator. On
tilted planets, the subsolar point moves throughout the year: if u is the
year angle (ranging from u = 0 to 2π over a complete orbit and starting
with u = 0 in northern springtime) and q is the obliquity (planetary
tilt), then:

sinβ = sinu sin q

In particular, the subsolar point ranges between latitudes ±q over
the year, reaching the extreme endpoints during summer and winter.

Local compass directions. If you’re at latitudeα on a spinning planet
with spin axis ~p, you can de�ne local coordinates using cross prod-
ucts. Le�ing ~z denote your local up direction (i.e., from the center of
the planet to your position):

(~z× ~p)× ~z North, the counterclockwise pole.
~p× ~z East, the rising sun.

(~p× ~z)× ~z South, the clockwise pole.
~z× ~p West, the se�ing sun.
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�ese compass directions can be de�ned everywhere except at the
two poles, where ~z× ~p = ~0.

Spin axis and local noon. At each latitudeα, the position of the spin
axis ~p and the noonday sun ~η� can be represented in local coordinates:

~p =
−−−−→
north cosα+ ~z sinα

~η� = ~z cosω +
−−−−→
north sinω

You can see that both vectors must always lie in the north-zenith
plane. Here, ω (the zenith angle) completely speci�es the position of
the noonday sun by describing the angle that the noonday sun makes
with the ~z axis.

�e sun’s daily circle in local coordinates. On a spinning planet
where days are much shorter than years, the position of the sun is given
by:

~N(δ) = ~η� sin (δ) +
−−→
east cos (β) cos (δ) + ~p sin (β)(1− sin δ)

Here, ~N is the position of the sun over time, ~η� is the position of
the sun at noon, and ~p is the (counterclockwise) spin axis of the planet.
As for the angles, δ is the day angle, ranging from 0 to 2π during one
planetary rotation such that δ = π

2 at noon.
Alternatively, expressed in local north-west-up coordinates, the sun’s

position becomes a function of your viewing latitude α, the latitude of
the subsolar point1 β , and the day angle δ:

~N(δ) =

− sinα cosβ sin δ + cosα sinβ
− cosβ cos δ

cosα cosβ sin δ + sinα sinβ


�e equinox e�ect A tilted planet has two annual equinoxes, dur-
ing which the planet behaves as if it has no tilt. In particular, you can
observe the following characteristic e�ects:

1. Day and night are equal in length everywhere on the planet.
2. �e line between the planet and the sun passes directly through

the equator.
1�e latitude β of the subsolar point is equivalent to the time of year u, because

sinβ = sinu sin q.
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3. �e sun rises due east and sets due west everywhere. (Except at
the two poles, where the sun revolves around the horizon.)

4. Ignoring physical climate phenomena, the planet has a uniform
season everwhere—no winter or summer extremes.

5. Everywhere on the planet, the shadow of a vertical sundial stick
traces out a straight line from west to east during the day, instead
of the usual curve. (�e two poles are an exception.)

6. Everywhere on the planet sees the sun rise and set during the
day. �e sun doesn’t stay above the horizon all day or below the
horizon all day anywhere.

7. Unlike every other time of year, there is no place where the sun
simply kisses the horizon exactly once without rising or se�ing.
Hence there is no place to see a sundial cast a parabolic shadow.

�e shape of sundial shadows A sundial is a vertical stick placed
on a level plane. Over the course of the day, the tip of the stick traces
out a certain shape. �is shape is always a conic section (hyperbola,
parabola, ellipse), though it may be degenerate.

�e type of shape depends on the number of times the sun crosses
the horizon in a single revolution. Most of the time it crosses twice—at
sunrise and sunset—and the shadow forms a hyperbola.

At the extreme polar regions, it hovers above (or below) the horizon
throughout the entire revolution, crossing the horizon zero times—and
the shadow forms an ellipse.

�ere is an intermediate case, occuring throughout the polar cir-
cle, where on a certain special day the sun spends all day above (or all
day below) the horizon but gently touches down on the horizon exactly
once. In this case, the shadow forms a parabola.

A parabolic shadow occurs at whichever latitude α is complemen-
tary with the subsolar latitude β, provided neither is at the equator.
Closer to the equator and the shadows are all hyperbolic. Closer to the
pole, and the shadows are all elliptical.

0.2 What is this document?

My living room is located in the northern hemisphere, facing south.
Late one a�ernoon, the sun shone through the leaves of a big tree in my
yard, splashing a hazy golden pa�ern on the wall. “�at’s interesting,”
I thought. “I bet if I stuck a dark spot onto the window, its shadow
would trace out a sundial pa�ern on the wall. I wonder if I could predict
exactly where the shadow would go, just from �rst principles. I wonder
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if I could extrapolate, from the shadow pa�ern on one day, what the
pa�ern would be throughout the rest of the year. And how exactly are
latitudes, time of year, and shadow connected, anyways—what can you
predict from what?”

�ese were practical questions, and I had a lot of theoretical gaps to
�ll in. I decided what I needed �rst was a very rough, intuitive expla-
nation of how the sun moves in the sky and how it looks from di�erent
spots on Earth. I didn’t mind neglecting essentially all of the physical
details, like atmosphere and even the eccentricity of our orbit, as long
as I could derive how the trajectory of the sun in the sky follows from
the fact that we’re orbiting it on a spinning planet with a tilted axis. I
wanted an explanation that was general enough to predict what you’d
see on other worlds.

A major obstacle in my project was that most of the explanations I
could �nd were more like glossaries for the kind of explanation I was
looking for: they would de�ne terms (the ecliptic plane, mean solar
time) and angle measurements (zenith angle, obliquity), introduce an
inscrutable diagram, and call it a day. But if these sundial shadows were
ever going to end up on my wall, I needed a coordinate system—not just
angle measurements, but the sines and cosines that put them into space.
And how did the astronomers even construct their coordinate systems
in the �rst place? What could you use to anchor yourself in this starry
universe?

My work to �ll this gap became Section 1.6, on coordinate systems,
our year-long orbit, and switching between “this planet orbits the sun”
and “the sun orbits this planet”2. In Section 2, I considered daily motion:
the spinning planet and what it means to have a tilted spin axis. In Sec-
tion 3, I found a formula for the position of the sun in local coordinates,
and in Section 4 classi�ed all the sorts of sundial shadows you can get.

0.3 Self-study homework problems

1. Explain how, in a circular orbit, the right hand rule allows you
to choose an unambiguous ~z axis. What about an unambiguous
choice of x or y axis?

2. If a translation T sends the axes of coordinate system A onto the
axes of coordinate system B, what transformation sends the co-
ordinates of a point represented in system A to its coordinates in

2Both views are reasonable from a relativistic standpoint. As far as I can tell, the only
thing the geocentrists got wrong was believing that celestial bodies can only orbit the
Earth.
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system B? (Consider the origin, for example.) Same question for
a rotation R. What about a translation followed by a rotation?

3. Sketch what a translation followed by a counterclockwise rota-
tion looks like. Choose some numbers and compute a 4×4matrix
representing a translation followed by a counterclockwise rota-
tion. Does the result agree with your picture? Ensure that you’ve
multiplied the transformations in the correct order, and ensure
that the rotation really is counterclockwise by applying it to an
easy test vector like [1, 0, 0, 1].

4. A planet orbits a sun in a circular orbit of radius A. Write a for-
mula for the planet’s coordinates, le�ing the center of the circle
be the origin. Which sign convention makes the orbit clockwise
versus counterclockwise? Why doesn’t it make a physical di�er-
ence in this simple case?

5. Using a coordinate transform, express the yearly motion of the
sun as seen from the planet. (Assume, for now, that the planet
does not spin.)

6. Considering the idealized symmetry of the situation—circular or-
bit, no spin, no tilt—what could you do to determine your position
in a circular orbit? Explain how the zodiac constellations help.

7. Explain this statement: “A planet’s spin axis ~p basically doesn’t
swivel, and as a result its tilt direction is a ma�er of convention.
Only the tilt angle is fundamental.”

8. Using a coordinate transform, express the yearly motion of the
sun as seen from a tilted planet with obliquity q. Use a centripetal
coordinate system. When rotating the spin axis, choose the rota-
tion so that at the start of the year the sun begins at height z = 0
moving upward. What season is this? How would you rotate the
spin axis di�erently so that the year starts in a di�erent season?

9. Draw a picture of the sun’s annual motion as seen from the tilted
planet’s surface. Which positions correspond to which seasons?

10. On Earth, the sun’s annual path passes through the twelve zo-
diac constellations throughout the year. In astrology, the sun’s
constellation at the time of your birth is your ‘sun sign’. Do the
stars look the same on Earth and Mars? �e zodiac constellations
might be di�erent on Earth and on Mars— why?

11. Suppose a planet with obliquity q has a circular orbit of radius
A around its sun. At any given moment, the line between the
planet and the sun forms the hypotenuse of a right triangle where
the legs are parallel and perpendicular to the planet’s spin axis.
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Draw this in a diagram. What angles and side lengths do you
know? (Remember your formula for the sun’s annual motion.)
What happens to this diagram in the limit asA becomes in�nitely
large? Assuming the sun is far away, derive the formula for the
sun’s latitude β in terms of the time of year u and the obliquity
q: sinβ = sinu sin q. (�e sinu term may be di�erent depending
on which season starts the new year. Explain the possibilities.)
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1 Coordinate systems in space

1.1 Orientation using the distant stars

If only the cosmos were overlaid with a convenient grid. �en we could
read o� numbers to tell exactly where we are, what direction we’re
headed, and how quickly we’re going there. Unfortunately, no such
grid has yet been found—somehow, we must �nd our own way to chart
where we are.

If we were in an empty universe, with no stars, no moon, no sur-
rounding debris to disrupt the blackness, there would be no way to get
your bearings. It would be similarly di�cult if we were in a thick fog,
or a storm of churning debris. Way�nding depends on having some
clear constant to measure against—measurements of position, orienta-
tion, and speed are all done relative to some identi�able waypoints.

Fortunately, in our part of the cosmos, the blackness of space is
mostly empty and we have a clear view full of sca�ered stars. �ese
stars are so staggeringly far away from us that—like a distant mountain
seen through a car window—they do not move, no ma�er how much
we move. Over all the distances that our planet and solar system move,
over the timescales that we care to measure, the stars stay in place. �ey
appear as if they are bright pinpoints of light poked through an enor-
mous black orb that surrounds us. It’s quite a convenient backdrop for
ge�ing our bearing in the universe.

Imagine being suspended in this starry void. �e stars are sca�ered
in an irregular pa�ern, so you can easily identify which part of the cos-
mic sphere you’re facing at any given moment: oh, there’s a familiar
cluster of stars. Because space is densely packed with stars (instead of
there being just a handful of stars), we can reasonably assume that you
can recognize whichever direction you’re facing. So, the distant stars
give you a kind of absolute orientation. By checking against the �xed
stars, you can always tell which direction you’re facing and how you’re
rotating.

If you are alone in this starry void, you still don’t have a practical
sense of position ormovement—remember, the stars are so far away that
even solar-system sized jumps don’t change how they look. To measure
these properties, we need other—closer—objects.

1.2 Viewing the sun from orbit

�e Earth moves around the sun in an approximately circular orbit that
takes one year to complete. Suppose youwere suspended in space, mov-
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ing in such an orbit around the sun. What would you see, and what
could you learn about the motion?

Once again, in this simple geometric setup, if you were suspended
in an idealized black void, you would not be able to tell that you were
moving: a circular path is perfectly symmetric, and so you would have
no cues to tell you where you were on that circle or how fast you were
moving. You would simply see a bright star suspended, context-less, in
the void.

Fortunately, the starry backdrop provides a cue. As shown in Fig-
ure 1, when you move around the sun, you change your point of view—
you change which part of the starry backdrop appears behind the sun.

Of course, you can only tell relative position and motion in space:
you’ll see the same thing whether you’re moving in a circle around the
sun, or the sun is moving in that same circle around you. �ere is, in an
important sense, no discernable di�erence3.

Figure 1: �roughout the year, the line of sight from the Earth to the sun
changes, making the sun appear to move against the starry backdrop.
When the planet’s motion repeats, the sun’s transit across the starry
backdrop repeats; the sun visits the same part of the starry backdrop at
the same time each year. �is �gure is adapted fromWikipedia’s Ecliptic
article.

�e line of sight from the Earth to the sun changes throughout the
3But suppose you want to �re a laser through the center of the sun. It’s sunrise—the

exact moment the center of the sun appears at the horizon. If you intend to �re the laser
now, what angle should your laser be pointed at so the laser will pierce the center of the
sun? (Neglect atmospheric refraction. �e sun is approximately eight minutes away at
light speed. �e earth completes one full rotation in twenty-four hours.) How does the
answer depend on whether the earth goes around the sun, or conversely?
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year, going in a complete circle. In practice, you will see the sun appear
against a di�erent part of the unchanging starry backdrop (the �xed
stars) throughout the year4. Because the orbital motion is cyclical, the
sun’s transit across the starry backdrop is also cyclical; the sun visits
the same parts of the backdrop at the same time each year.

If you get your bearings by identifying constellations in the night
sky, then you can describe what part of the sky the sun is in by saying
what constellation it’s passing in front of. �is is what the twelve con-
stellations of the zodiac are: twelve named waypoints that the sun visits
throughout each year.

1.3 All orbital motion is planar

In idealized two-body problems, the only orbital shapes are conic sec-
tions: ellipses and circles, parabolas, and hyperbolas. �ese are all 2D
shapes, con�ned to a plane.

As a result, in any idealized orbital problem, you can always �nd
a convenient coordinate system in which the planet’s orbital motion is
exclusively in the x-y plane and has no z component.

Note that, suprisingly, all the planets in our solar system happen to
share approximately the same orbital plane. �at is, they all move in
orbits that occupy roughly the same plane.

1.4 Centripetal coordinate systems

Any circular motion (such as a planetary orbit) gives you an unambigu-
ous way to de�ne a coordinate system.

• �e �rst axis,~r, is in the radial direction, pointing from the planet
to the star.

• �e second axis, ~t, is in the tangential direction, pointing in the
direction the planet is moving. In circular motion, this is always
perpendicular to the radial direction

• �e third axis, ~z, is in the axial direction—the central axis around
which the planet moves in a circular path. It is de�ned by the
right hand rule as the cross product of~r×~t (which is incidentally
in the same direction as the planet’s orbital angular momentum
as de�ned in physics).

Of course, the position and velocity of the planet are changing all
of the time and so these potential axes are changing in time. But if

4On a planet, it’s hard to get your bearings in daylight, so suppose youmark the sun’s
position at noon, then return at night to see what stars are in that position.
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you freeze any moment in time, the axes form an orthogonal coordinate
system in that moment that you can use.

Note that in this coordinate system, the planet’s orbit remainswithin
a 2D plane, the r–t plane.

1.5 Example: Planetary impact

Suppose a planet is orbiting its star when a stray meteor crashes into it,
giving it a kick in some particular direction. What happens next?

Does it wobble in its orbit? Corkscrew away? To see what happens
next, imagine the moment just a�er the planet has been kicked. If you
freeze time in that moment, you can identify two vectors: the planet’s
velocity, and the vector between the planet and the sun. From that mo-
ment onward, the planet’s motion will be in the plane de�ned by those
two vectors.

�e orbital motion is once again planar, though you might have to
�nd a new coordinate system where that plane is level.

1.6 Transformations in homogeneous coordinates

You can represent translations and rotations as matrices if you use ho-
mogeneous coordinates. In homogeneous coordinates, you represent a
3D point 〈x, y, z〉 as 〈x, y, z, 1〉. �at is, you represent three dimen-
sional points as four dimensional points with a constant 1 in the fourth
slot.

In homogeneous coordinates, a counterclockwise rotation by angle
θ around the z axis is achieved using the matrix:

Rz(θ) ≡


cos θ + sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1
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And a 3D translation in the amount 〈+∆x,+∆y,∆z〉 is achieved
using the matrix:

T =


1 0 0 +∆x
0 1 0 +∆y
0 0 1 +∆z
0 0 0 1


1.7 Distant stars and points at in�nity

By convention, you can multiply the coordinates of a homogeneous
point by any amount α 6= 0 without changing its meaning. For ex-
ample, the homogeneous point 〈1, 2, 3, 1〉 and the homogeneous point
〈5, 10, 15, 5〉 are di�erent ways of expressing the same point. You can
always normalize a homogeneous point by dividing all the components
by its fourth component; this will put it back into standard form with
its fourth component equal to 1.

Something special happenswith points that have a zero in the fourth
component 〈x, y, z, 0〉. �ey behave like they are in�nitely far away.

A distant object, such as amountain, won’t seem tomove verymuch
as you change position. A very distant object, such as the stars in the
sky (or, to a lesser extent, the moon) won’t seem to move at all even if
you travel by car.

Points at in�nity capture this phenomenon in an idealizedway. Trans-
lations have no e�ect at all (try applying a translation matrix to a point
at in�nity, for example), the way movement doesn’t change the appear-
ance of a distant object. Rotations still do have an e�ect—points at in-
�nity have a particular direction; you can look toward them or away
from them for example.

2 Planets that spin

2.1 Axial tilt (obliquity)

Some planets spin. I use the term spin axis to refer to the imaginary axle
around which it spins. By analogy, the orbital axis is the imaginary axle
around which the planet orbits; for an ideal circular orbit, this is the line
that perpendicularly pierces the center of the circle.

Some planets, like our Earth, have axial tilt. Axial tilt means that the
spin axis and the orbital axis are not parallel. (If a planet only orbited a
star and did not spin, there would be no such thing as axial tilt.)

�e two major questions I wanted to know about axial tilt are these:
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• In what coordinate system is the axis tilted? What are the angles
de�ned relative to?

• How does the tilt change throughout the year?

You can de�ne tilt in terms of the cross product A planet has
an axial tilt whenever its spin axis ~p and its orbital axis ~z aren’t parallel
but instead point in di�erent directions. In that case, the cross product
~p×~z is nonzero. You can describe ~p as a rotated version of ~z. You have
taken ~z and rotated it by some angle q around some axis.

In fact, the axis has a convenient mathematical de�nition—it’s just
the cross product of those vectors ~p× ~z.

�at angle q is called the obliquity of the spin axis. As I’ll describe
below, you can calculate it using the usual dot product rule:

~p · ~z = |~p| |~z| cos q

q ≡ cos−1
[
~p · ~z
|~p| |~z|

]
�is is just a pure geometric fact:

Cross product yields the unique rotational axis. If ~a
and ~b are two vectors with the same length but di�erent
directions, you can describe~b uniquely as a rotated version
of ~a.

A rotation is de�ned by the axis of rotation and the amount
(angle) of rotation. Here, the axis is given by the cross
product ~a × ~b and the angle is given by the dot product
~a ·~b = |~a| |~b| cos θ.

�espin axis basically doesn’t swivel Surprisingly, Earth’s spin
axis (basically) points resolutely in the same absolute direction at all
times. �at is, in an idealized sun-centered coordinate system where
the Earth moves in a perfect circle around the sun, the spin axis never
changes direction (Figure 2).

Because the Earth’s spin axis never changes direction, both the obliq-
uity angle q and the rotational axis ~p × ~z are constant throughout all
time. �ey’re a fundamental property of the orbit itself.
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2.2 Seasonal coordinate system

If a planet moves in a circular orbit around its star, the orbital axis ~z
is always perpendicular to the radial vector ~r between the planet and
the star. In fact, over the course of an entire orbit, the ~r vector sweeps
through every vector perpendicular to ~z.

Figure 2: Over the course of a full orbit, the radial axis (turquoise)
sweeps through all possible vectors perpendicular to the orbital axis
(black).

If the planet is tilted, then its spin axis ~p and orbital axis ~z are not
parallel. �eir cross product ~z× ~p is therefore a nonzero vector that is
perpendicular to ~z.

You can therefore �nd a place in the orbit where ~r = ~z× ~p. �is is
called an equinox. (�e other equinox occurs when ~r = −~z× ~p.)

As we will see, the equinox is a special moment in the year for a
tilted planet. It is useful to use this equinox-based centripetal coordinate
system:

~z = ~z

~r = ~z× ~p
~t = (~z× ~p)× ~z

and choose the year angle so that u = 0 occurs at the equinox5.

2.3 Amount of sunlight as a function of obliquity

Suppose you have a planet with obliquity (axial tilt angle) q, and suppose
the year is much longer than the length of the day6.

5Many cultures do choose a calendar system that starts at the equinox, celebrating
new year’s on the �rst day of spring.

6�is is an idealized case, where the ratio of day length to year length goes to zero.
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At the poles, you’ll experience half a year of uninterrupted sunlight7.
Other places will receive continuous sunlight for less than half the year.

Linear relation between latitude and continuous sun-
light. �antitatively, the poles (which are at±90◦ latitude)
receive half a year of continuous sunlight. �e polar circles,
which are de�ned as ±(90− q)◦ latitude and therefore de-
pend on the amount of obliquity, receive a single day of
continuous sunlight. (As a fraction of a long, long year, this
is just zero.) �e amount of continuous sunlight varies lin-
early between these limits, and is identically zero between
the two polar circles (between (90 − q)◦ and −(90 − q)◦
latitudes).

Figure 3: On a tilted planet (with obliquity q), the polar regions receive
continuous sunlight for an entire day or more. In the idealized case
where years are much longer than days, the amount of continuous sun-
light ranges linearly from 0 to half a year as you travel from the polar
circles (within q latitude of either pole) to the poles themselves. Here,
yellow regions receive at least a day of continuous sunlight; blue re-
gions receive at least a day of continuous darkness; and white regions
receive less than a day of either, although of course the amount of sun-
light varies seasonally everywhere.

7I mean “sunlight” geometrically: a place gets sunlight whenever the sun is physically
above the horizon there. �is de�nition neglects physical e�ects such as atmospheric
refraction, which make the sky look bright even when the sun is below the horizon.
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A picture (Figure 3) is clearer than a formula, but if you want a for-
mula relating the fraction of the year f that a particular latitude ` has
continuous sunlight, it’s:

f(`) = max

[
0,

1

2
− 90◦ − |`|

2q

]

2.4 Spin direction depends on perspective

Every spinning planet has two poles. It spins clockwise around one pole
and counterclockwise from another. �erefore, there’s no real answer
to the question “Does the planet spin counterclockwise or clockwise”
unless you have a viewing direction in mind.

Earth spins counterclockwise around its north pole and clockwise
around its south pole.

2.5 Hemisphere bias in clockwise, north, south

Surprisingly, the etymologies of the terms clockwise, north, and south
are based on the behavior of the sun in Earth’s northern hemisphere:

• In the northern hemisphere, the shadow of a sundial traces out a
clockwise path throughout the day. Mechanical clocks were de-
signed to imitate this pa�ern, which is why that direction is called
“clockwise”.

• �e term South is the derived from the term sunward. In the
northern hemisphere, the sun travels across the southern half of
the sky.

• Similarly, North is the nether side of the sky, where the sun doesn’t
shine8

As a result, if our linguistic heritage were developed in the south-
ern hemisphere, clockwise, north, and south would have the opposite
meanings—the shadows of sundials move counterclockwise in the south-
ern hemisphere, the sunward side is toward the north, and the nether
side is toward the south.

It makes sense that people living in the northern hemisphere devel-
oped these terms based on their particular experiences. However, when
everyone on Earth uses this terminology, then we are all taking an im-
plicitly northern perspective.

8Incidentally, this is why moss, which prefers low light, has a slight bias for growing
on the north sides of trees in the northern hemisphere.
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Cosmically, it would be nice to have planetary-scale terminology
that matches the local conditions everywhere and doesn’t privilege a
speci�c hemisphere. Especially for other planets in other star systems:
terms like north, south, clockwise, and counterclockwise—not to men-
tion summer and winter—are hemisphere-dependent.

While East andWest have a de�nite geometric meaning on any spin-
ning planet that orbits a star—the planet sees the star rise in the east and
set in the west—North and South and summer and winter have no uni-
versal meaning.

2.6 Red and black terminology

Here is my proposal for planet-wide terminology:

• Any spinning planet has two poles: the red pole, around which it
spins counterclockwise per the right hand rule, and the black pole
around which it spins clockwise.

• �epoles divide the planet into a red hemisphere and a black hemi-
sphere.

• Similarly, there are red and black polar circles, and red and black
tropics.

• �e two equinoxes are the redward equinox and the blackward
equinox, which occur as the sun crosses the equator into one of
the two hemispheres.

• And we can refer to right handed spin as redwise and le� handed
spin as blackwise.

Incidentally, this language matches the etymological origins of the
Red and Black Seas on Earth.

While you could argue that north, south, clockwise, and counter-
clockwise are already harmless, having been stripped of their hemisphere-
speci�c origins, I believe as a ma�er of taste and universality that it is
nice to have fresh neutral terminology.

I use a mixture of traditional and new terminology in this document.

3 �e position of the sun as seen from the planet’s
surface

3.1 Local coordinates: the direction of sunrise and sunset

A spinning planet has a spin axis vector ~p, de�ned as the pole around
which it spins counterclockwise. (On Earth, this is the north pole.)
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At each point on a planet, there’s a zenith vector ~z which points
straight overhead. �e zenith vector ~z depends where you are on the
surface; it points radially outward from the planet’s center to your po-
sition. �e spin axis ~p is location-independent.

You can compute compass directions from these two vectors: ~z× ~p
points West toward the se�ing sun, while ~p×~z points East toward the
rising sun9. (Figure 4)

Figure 4: �e direction of sunrise (East) can be de�ned in local coordi-
nates: Take a top-down view of a spinning planet. Every spot on the
planet has a locally-de�ned zenith vector ~z which points straight up. •
As you can see, if the planet spins counterclockwise around its spin axis
~p, it will make the sun appear in the direction ~p× ~z.

3.2 North, East, South, West in local coordinates

If you’re on a spinning planet whose spin axis is ~p and your local “up”
direction is ~z, you can de�ne the four compass directions as follows:

(~z× ~p)× ~z North, the counterclockwise pole.
~p× ~z East, the rising sun.

(~p× ~z)× ~z South, the clockwise pole.
~z× ~p West, the se�ing sun.

3.3 �e height of the sun at noon depends on latitude

I used to believe that the sun passed directly overhead at noon. It turns
out that, instead, the noonday sun will be more in the nothern or south-
ern half of the sky, depending on your latitude α.

9�is de�nition does not depend on your planet’s de�nition of North. It just requires
that ~p is whichever axis the planet rotates counterclockwise around.
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Figure 5: Local compass directions. Using the right-hand rule, you can
compute the four compass directions as cross products of ~p (the spin
axis) and~z (the local upward direction). �is process works everywhere
except the poles, where the two vectors are parallel. ~z×~p = ~p×~z = ~0.

Changes in latitude produce equal changes in zenith
angle. If you change your latitude by an amount α toward
the north, youwill see the noonday sunmove by an amount
α toward the south.

�e situation is easiest to understand on a planet with no axial tilt
(obliquity). On a planet with no axial tilt, the noonday sun is directly
overhead at the equator. If you move northward by an amount α, the
sun will move southward in the sky by that same amount. So, at the
poles where the latitude is±90◦, the sun simply sits at the horizon year-
round. In general, on a planet with no tilt, the sun’s zenith angle from
“straight overhead” is exactly the opposite of your latitude.

If a planet has axial tilt, the sun will be directly overhead at various
latitudes throughout the year, not just at the equator. Still, the equal-
changes rule still applies: if the sun is directly overhead at latitude β
at some point during the year, and you are at latitude α, then the sun’s
declination is at angle β − α.

Noonday zenith angle equals the di�erence in lati-
tude between viewer and sun. If you are at latitude α
and the sun is directly above latitude β, then the noonday
sunwill be at zenith angle β−α on the north side of straight
overhead.
(On a planet with no tilt, β = 0.)

3.4 On a tilted planet, the latitude of the sun oscillates

If you draw a line from the star to the center of a planet, it will pierce
the surface of the planet at some point. �is is called the subsolar point.

On a planet with no axial tilt, the subsolar point is always on the
equator. On a planet with obliquity q, the subsolar point oscillates back
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and forth between latitude +q and latitude−q throughout the year. �e
latitudes±q are called the northern and southern tropics; they’re the fur-
thest points from the equator where the sun can ever be directly over-
head.

�antitatively, if u is the year angle (a measure that goes from 0 to
2π over the course of one full orbit) and β is the latitude of the subsolar
point, and q is the obliquity, then (as we will see in the next section):

sin(β) = sin(u) sin(q)

Figure 6: On a tilted planet with obliquity q, the sun’s latitude—that is,
the point where a line from the sun to the planet crosses the planet’s
surface—wanders annually between latitudes ±q. �e motion is peri-
odic but not quite sinusoidal.

�is is sort of a strange compound periodic motion. Note that if
q = 0 (no axial tilt), we get sin(β) ≡ 0 and the sun is always directly
above the equator.

Otherwise, if we have some axial tilt q 6= 0, then the four quarters
of the year have special meaning:

When u = 0 or u = π, we have that β = 0 and the subsolar point
crosses the equator.

When u = π/2 or u = 3π/2, we have that β = ±q, its extremal
value.

�ese four important points correspond to the four seasons.
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3.5 Exact and approximate formulas for the sun’s
latitude

�e subsolar point, as we’ve de�ned it, is the point where the line be-
tween the planet and the sun crosses the planet’s surface. Let’s compute
the latitude of the subsolar point as it changes throughout the year.

On a planet with axial tilt (obliquity) q, the sun appears to orbit the
planet in a yearly circle; the sun’s orbital plane is tilted by angle q with
respect to the planet’s spin axis.

Without axial tilt, the position of the sun over time has the coordi-
nates for circular motion:

〈A cosu,A sinu, 0〉

whereA is the distance between the sun and the planet, u is the year
angle (ranging from 0 to 2π over the course of the year), and the axes
are chosen so that the z direction coincides with the planet’s spin axis.

To account for the axial tilt, we now have to rotate the sun’s trajec-
tory by angle q. �is breaks the symmetry of the sun’s orbit—previously,
all points on the year angle u were equivalent. A�er rotation, the sun’s
position will rise and fall past the equator. �is symmetry-breaking pro-
duces the four seasons.

Because the situation is symmetric, we can rotate around any axis
in the x-y plane. Our choice of axis just determines what seasonal time
of year u = 0 represents. Let’s rotate around the x axis so that u = 0
will correspond to spring in the +z hemisphere.1 0 0

0 cos q sin q
0 − sin q cos q

A cosu
A sinu

0

 =

 A cosu
A sinu cos q
−A sinu sin q


�e position of the sun in its rotated position forms a right trian-

gle whose height is −A sinu sin q, whose hypotenuse has length A,
and whose internal angle β is the latitude of the subsolar point. By
trigonometry, we obtain the relationship that de�nes the subsolar lati-
tude:

sinβ = sinu sin q

Now the size of the latitude |β| is at most the size of the obliquity q.
If the obliquity is small, then the small-angle approximation says that
sin (x) ≈ x, so we can approximate:

β ≈ q · sinu when q is small
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Under this approximation, we see that the subsolar point basically
oscillates sinusoidally between latitudes±q (the tropics) over the course
of the year.

3.6 Decomposing vectors into compass directions

Let ~p be the spin axis of your planet. Pick a spot on the surface of a
planet and let ~z be the local zenith direction (“straight up”).

If you rotate the zenith vector ~z by any angle θ in the north-south
direction, the result can be expressed as a linear combination of the local
zenith direction ~z and the local redward direction

−−−−→
north :

~znew = ~z cos θ +
−−−−→
north sin θ

(Note that you can de�ne
−−−−→
north as a cross-product combination of

the zenith and spin axis vectors:
−−−−→
north ≡ (~z× ~p)× ~z.)

In particular, the spin axis ~p can be expressed in terms of these local
coordinates: if α is your current latitude, then by elementary geome-
try10, ~p is just a version of ~z that has been rotated northward by the
complementary angle π − α.

~p =
−−−−→
north cosα+ ~z sinα

Similarly, no ma�er where you are on the planet, the noonday sun
lies somewhere in the north-zenith plane. �e angle that the sun devi-
ates from directly overhead is called its zenith angle ω. You can express
the position of the noonday sun in terms of these local coordinates as:

~η� = ~z cosω +
−−−−→
north sinω

Azimuthal angle of the sun. �e position of the sun at
noon can be speci�ed with a single number, the azimuthal
angle ω. �is is because the noonday sun must always lie in
the north-zenith plane; the only question is at what angle.

Given the azimuthal angle, the position of the noonday sun
is ~η� = ~z cosω +

−−−−→
north sinω.

Note that ω is equal to the di�erence in latitudes between
the viewer and the sun: ω = β − α.

10In the limit as the distance between the planet and star grows much greater than the
radius of the planet
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3.7 Noon height determines the time of year

�e position ~η� of the sun at noon is determined by the latitude and
time of year. �is is the principle behind a calendar sundial, which tells
you the time of year given that you know the height of the sun at noon.

�e postion of the sun at noon is always in the north-up plane; the
exact orientation is speci�ed by the azimuthal angle ω. By geometric
reasoning, this angle is equal to the di�erence in latitude between the
viewer and the sun: ω = β − α.

�e subsolar point’s latitude β changes with the year angle u and
the obliquity of the planet q via sinβ = sinu sin q.

Hence the time of year (u) can be determined if you know your lat-
itude (α), the azimuthal angle of the sun at noon (ω), and the obliquity
of the planet q:

sinu =
sin (ω + α)

sin q

3.8 Rodrigues’s rotation formula

Suppose you revolve a vector ~v around the axis ~k by an angle of θ,
according to the right hand rule. Rodrigues’s rotation formula tells you
how to compute the end result as a linear combination of the vectors ~v,
~k× ~v, and ~k:

~vnew = ~v cos θ + (~k× ~v) sin θ + ~k(~k · ~v)(1− cos θ)

3.9 �e sun’s daily motion as observed from the surface

�roughout the course of the day, the sun seems to revolve around the
polar axis ~p. You can use Rodrigues’s formula to compute the coordi-
nates of the sun as seen from a particular position on the planet11.

In local coordinates, the pole and noonday sun are at:

~p =
−−−−→
north cosα+ ~z sinα

~η� = ~z cos (β − α) +
−−−−→
north sin (β − α)

where α is your latitude and β is the latitude where the sun is directly
overhead.

11Note that in the analysis that follows, I’m assuming that—as on Earth—years are
much longer than days. �is means that we can consider β (the sun’s latitude, i.e. the
latitude of the subsolar point) to be constant over the course of one day. �e actual motion
is a li�le more complicated.
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We can use Rodrigues’s formula to compute how the sun revolves
around the pole. If we let θ be the sun’s angle away from noon (so θ = 0
corresponds to noon), the sun’s position through the day is:

~N(θ) = ~η� cos θ + (~p× ~η�) sin θ + ~p(~p · ~η�)(1− cos θ)

Now, it turns out that the quantities ~p×~η� and ~p ·~η� have a simple
form12:

~p× ~η� =
−−→
east cosβ

~p · ~η� = sinβ

Note that these expressions don’t depend onα, the viewer’s latitude:
the pole and sun have a �xed angle between them, so while changing
your position on the planet changes their local coordinates, it doesn’t
change their relative angle measurements.

So the position of the sun throughout the day is:

~N(θ) = ~η� cos (θ) +
−−→
east cos (β) sin (θ) + ~p sin (β)(1− cos θ)

Now, θ is an unusual way for measuring the sun’s daily progress. It
has the wrong handedness (θ gets more negative throughout the day)
and a strange origin (θ = 0 at midday). Instead, we can use the angle
measure δ ≡ π

2 − θ.

~N(δ) = ~η� sin (δ) +
−−→
east cos (β) cos (δ) + ~p sin (β)(1− sin δ)

3.10 �e sun’s daily motion in local (north, west, up)
coordinates

We’ve obtained a formula for the position of the sun ~η�(θ) as seen from
the planet’s surface. �at formula was a function of the spin axis ori-
entation (~p), subsolar latitude (β), and time of day (θ) (where θ = 0 is
noon).

By picking the right-handed coordinate system
−−−−→
north = [1, 0, 0]
−−−→
west = [0, 1, 0]
−→up = [0, 0, 1],

12To obtain this form, I used the fact that the cross product distributes across vector
sums, the fact that cross product of a vector with itself is zero, and the sum identities for
sine and cosine.
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we can express that formula for the sun’s position in local (north, west,
up) coordinates, as seen from a particular viewing latitude α:

~N(δ) =

− sinα cosβ sin δ + cosα sinβ
− cosβ cos δ

cosα cosβ sin δ + sinα sinβ



Figure 7: �e position of the sun ~N during the course of the day, as a
function of the viewer’s latitude α, the sun’s latitude β, and the time of
day δ (an angle ranging from 0 to 2π over the course of one revolution).
�e three coordinates represent local ‘north’, ‘west’, and ‘up’ relative to
the viewer.

Recall that the planet spins around its axis, which makes the sun
seem to orbit the planet in the opposite direction. Accordingly, the sign
on δ—and hence the sign on the westward term—has been chosen so
that the planet’s spin around its axis and the sun’s daily trip around the
planet go in opposite directions. �e sun correctly rises in the east and
sets in the west.

3.11 Time of sunrise and sunset

�e height of the sun above the horizon, as we have found, is:

Nz(δ) = cosα cosβ sin δ + sinα sinβ

where α is your latitude, β is the subsolar latitude, and δ is the day
angle (from 0 to 2π during one day, reaching π/2 at noon). Sunrise
and sunset occur whenever this height reaches zero; the corresponding
value of δ tells you the time.

If the coe�cient cosα cosβ is equal to zero (i.e., if either you or
the sun are at the poles), then the sun spends all day at the horizon in
perpetual twilight. Otherwise, we can rearrange terms to �nd:

sin δ =
sinα sinβ

cosα cosβ

which has two solutions δ1+δ2 = π, since the sin function achieves
the same height at supplementary angles.
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3.12 �e center, radius, and orientation of the sun’s daily
motion

�esun’s journey throughout the day is produced by revolving it around
the spin axis ~p. For this reason, the sun’s daily path is always some kind
of circle. In this section, we’ll compute the center, radius, and orienta-
tion of that circle in order to get intuition.

First, we’ll use our earlier formula for the position of the sun ~N(δ).
To obtain three points on the circle, we’ll plug in three di�erent conve-
nient times of day: dawn (δ1 = 0), dusk (δ2 = π), and noon (δ3 = π/2).
At those times, the sun will be at, respectively:

~N1 =

cosα sinβ
− cosβ

sinα sinβ

 ~N2 =

cosα sinβ
+ cosβ

sinα sinβ

 ~N3 =

cosα sinβ − sinα cosβ
0

cosα cosβ + sinα sinβ


�e sun is at opposite ends of the circle at dawn (~N1) and dusk (~N2);

therefore, the average of those two positions will be the center of the
circle:

center(α, β) ≡ sinβ ·

cosα
0

sinα


Note that, therefore, the subsolar latitude β controls how far the center
is displaced from the origin, while the viewer latitudeα controls in what
direction. �e center can be displaced anywhere in the north-up plane—
no east-west displacement allowed.

Also note that when α and β have the same sign—i.e., when the
viewer and the subsolar point are in the same hemisphere—the center
is displaced above the horizon, creating the long days of summer. When
they have opposite signs, the center is displaced below the horizon, cre-
ating the long nights of winter.

Seasonally varying daylight. �antitatively, the center
of the sun’s daily circle is translated above the horizon by
the amount sinα sinβ. So, when the viewer (α) and sub-
solar point (β) are in the same hemisphere, you get the
long days of summer. When they di�er, the displacement
is negative—long winter nights.

As for the radius of the circle, we can simply take the distance be-
tween dawn (~N1) and dusk (~N2) and divide by two. We �nd:

radius(α, β) ≡ cosβ
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Hence the radius of the circle is controlled by the subsolar latitude. �is
makes sense: the dailymotion of the sun is a revolution around the polar
axis, so the closer the sun gets to either pole, the smaller the radius will
be.

Finally, we can compute the orientation of the circle. One conve-
nient way to express orientation is to �nd a normal vector perpendic-
ular to the circle. To do so, we’ll take the cross product of two radii:
~N1 − center and ~N3 − center. We �nd:

normal(α, β) ≡ cos2 β ·

cosα
0

sinα


Surprisingly, the normal vector is proportional to the center vector.

�e circle is always aligned with the direction in which it is displaced.
Simply put, the sun’s daily circle always points toward the origin. �e
circle is viewer-centered.

To recap:

Measuring the sun’s circle. �e sun’s daily path is a circle
of revolution with the following properties:

center(α, β) ≡ sinβ ·

cosα
0

sinα


radius(α, β) ≡ cosβ

normal(α, β) ≡ cos2 β ·

cosα
0

sinα


Here, α is the viewer’s latitude and β is the latitude of the
subsolar point. �e coordinate axes are viewer-local, repre-
senting the north, west, and upward directions respectively.
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3.13 Diagrams of the sun’s daily circle
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Figure 8: �e sun moves in a particular circle perpendicular to the spin
axis ~p; the position of the circle is the same for all viewers, and is deter-
mined by the sun’s latitude. However, from di�erent viewing latitudes,
the angle between the spin axis and the ground plane changes, causing
a di�erent amount of daylight per revolution (It is dark whenever the
sun is below the local horizon). • You can tell that in these pictures, it
is summer in the upper hemisphere—the sun spends more than half the
day above the horizon there, and the pole spends the entire revolution
above the horizon. At the equator, light and dark are equally balanced.
In the lower hemisphere, there is more dark than light, and the pole is
in darkness all day long. • Note that all viewers shown here are at the
same longitude and hence the same time of day.
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Figure 9: Here, you see how the daily path of the sun changes with
the viewer’s latitude (α, horizontal axis) and subsolar point (β, vertical
axis). On a planet with obliquity q, the sun oscillates between latitudes
±q throughout the year and never goes beyond them. Note that rows
correspond to the same moment in time on di�erent parts of the globe.
It is dark when the sun is below the horizon.

35



3.14 �e term that represents seasonally longer days

We’ve seen that the height of the sun above the horizon is:

Nz(δ) = cosα cosβ sin δ + sinα sinβ

[matching signs for β and α mean that you’re in the same hemi-
sphere as the sun]

�e zeroes of Nz , corresponding to times of sunrise and sunset, oc-
cur whenever δ satis�es the equation

cosα cosβ sin δ = − sinα sinβ

Observations:

• A midnight sun occurs when the sun is above the horizon for a
full day. A midnight sun occurs whenever the sun is away from
the equator (β 6= 0) and the viewer is β degrees away from the
pole.
�en the sunrise-sunset equation becomes:

sinβ cosβ sin δ = − sinβ cosβ

If you �x β 6= 0 (sun away from the equator) and put the viewer
at α = π/2− β, the equation becomes:

sinβ cosβ sin δ = − sinβ cos(β)

3.15 �e sun and the viewer locations are symmetric

Note how α, the viewer location, and β, the subsolar location, are on
equal footing in the daylight equation.

�e excess daylight term vanishes (days and nights have the same
length) both when you’re at the equator (α = 0) in which case the
sun’s position is irrelevant, and when the sun is at the equator (β = 0)
in which case your viewing position is irrelevant. �ere’s an edge case
when you’re at the equator and the sun’s at one of the poles (or vice
versa), in which case the sun is constantly at the horizon.

3.16 �e sideways planet and the time-space exchange

On a planet with the largest possible obliquity, the spin axis is actually
orthogonal to its orbital axis. (During some parts of the year, in other
words, the spin axis sometimes points directly at the sun.) On this kind
of sideways planet, some marvelous things happen.
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First, the subsolar latitude wanders from pole to pole over the course
of the year. In general, the subsolar latitude ranges between the tropics
at ±q; here, that range encompasses the entire planet.

Speci�cally, as we’ve seen, the subsolar latitude β generally obeys
the equation: sin(β) = sinu sin q,13 which on a sideways planet (q =
π/2) becomes

β = u

so the subsolar latitude corresponds directly to the time of year: at
the north pole during northern summer, the south pole during southern
summer, and changing linearly in between.

Second, the position of the sun in the sky becomes, with the substi-
tution β = u:

~N(δ) =

− sinα cosu sin δ + cosα sinu
− cosu cos δ

cosα cosu sin δ + sinα sinu


Note that the α and u terms can be exchanged, keeping the value of

Nz . �is means that you can directly interconvert viewer position and
time of year.

3.17 Near the equinoxes, the axis tilt e�ects vanish.

4 Sundials

4.1 Sundials and shadows

A sundial is a device for telling time based on the position of the sun.
When a vertical (~z-aligned) stick (called a gnomon) is placed into the
ground, the tip of the stick traces out a shadow based on the time of
day. Speci�cally, the tip of the gnomon casts a shadow at the point
where a ray passing between the sun and the tip of the gnomon meets
the ground plane.

If we choose a coordinate system where the tip of the gnomon is at
〈0, 0, 0〉, then by a similar-triangle argument, a light source at 〈X,Y, Z〉
will cast a shadow onto the ground at 〈−fX/Z,−fY/Z,−f〉, where f
is the height of the gnomon.

For simplicity, let’s assume f = 1. Let’s also ignore the Z com-
ponent, just considering the 2D shadows being drawn on the ground
plane.

13Here, u is the year angle, which ranges from 0 to 2π over the course of the year, and
q is the obliquity—the angle of spin axis tilt.
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�en, in general, we have what I call the sundial principle:

Sundial principle. In a standard sundial setup, a light
source at point 〈X,Y, Z〉will cast a shadowonto the ground
at: [

x
y

]
=

[
−X/Z
−Y/Z

]
(�is is also, incidentally, the principle for how an idealized pinhole

camera works. �e pinhole and the tip of the gnomon play analogous
roles, as do the ground plane and the back of the camera.)

4.2 Shadows at in�nity and phantom shadows

Any light source above the tip of the gnomon Z = 0 will cast a proper
shadow onto the ground. But the tip of the gnomon atZ = 0 represents
the limit for shadow-making: a light source at Z = 0 will emit a ray of
light that passes parallel to the gorund plane and never intersects it.
Call this a shadow at in�nity; as a light source approaches Z = 0 from
above, its shadow goes further and further away.

Something even stranger happens when the light source is below
Z = 0. A light source below the tip of the gnomon will still send a ray
through the tip of the gnomon. �e emi�ed ray is heading away from
the ground plane and so will never physically intersect it. But if you
imagine rewinding the ray’s path backwards behind the light source,
you’ll eventually �nd a spot that meets the ground plane. Because this
places the light source between the tip of the gnomon and this imaginary
intersection point, it doesn’t physically exist. But it has some interesting
mathematical properties, so let’s call it a phantom shadow. (Figure 10).

4.3 A formula for the sundial’s shadow position

If we combine our sundial equation with our formula for the sun’s po-
sition ~N(δ) throughout the day (δ varies from 0 to 2π, reaching π/2 at
noon) at a particular viewing latitude (α) and sun’s latitude (β), we �nd
that the gnomon’s daily shadow follows an arcing curve[

x
y

]
=

[
+sinα cos β sin δ − cosα sin β
cosα cos β sin δ + sinα sin β

+cos β cos δ
cosα cos β sin δ + sinα sin β

]

4.4 Hyperbola, parabola, circle

Consider the shape that the tip of the gnomon traces out over the course
of the day. You can prove that this shape will generally follow one of
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Figure 10: �e height of the light source determines what kind of
shadow is cast. Real shadows (�rst two images) occur when the light
source is above the gnomon. �e lower the light source, the further
away the shadow—as with sunrise and sunset. • Exactly at the level of
the gnomon (third image), it casts no real shadow, just a shadow “at in-
�nity” in some particular direction. Below the gnomon (fourth image),
it casts a “phantom shadow”, an imaginary shadow between the light
source and the gnomon. Phantom shadows are useful for understanding
conic sections with two separate branches—one branch is a real shadow
cast during the day, and the other is a phantom shadow cast at night.

three possible curves: an ellipse, a parabola, or a hyperbola. �ese are
conic sections, the quadratic curves you can draw in two dimensions.

�e type of shape is determined by the number of times the sun
crosses the horizon when the planet completes a single spin. If you
imagine the sun’s daily path as a circle located somewhere in the sky,
you can see that it can cross the horizon twice, once, or zero times.

In summer near the polar regions, there are times where the sun
never sets—it remains in the sky for the entire day. �e shadow of the
sundial therefore traces out a closed shape, an ellipse.

In themost familiar case, the sunwill cross the horizon twice a day—
once when it rises, once when it sets—and the shadow will be a hyper-
bola.

If the conditions are exactly, perfectly right, you get an intermediate
case—a parabola. �e parabolic shadow occurs when the bo�om of the
sun’s daily circle just kisses the horizon, without passing below it. In
this way, it manages to touch the horizon just once, a simultaneous dusk
and dawn.

4.5 �e equinoctal line and the in�nite circle

Sundial shadows are, in general, ellipses, parabolas, or hyperbolas. How-
ever, in special circumstances, you can get shadows that are special or
degenerate versions of these.

On a planet with no tilt, or on a tilted planet during the equinoxes,
the sun rises due east, passes directly overhead, and sets due west. As
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such, the sundial’s shadow traces out a very special hyperbola—a straight
line14.

�e poles are an exception. On a planet with no tilt, or a tilted planet
during the equinoxes, the sun sits exactly at the horizon, in perpetual
twilight, without rising or se�ing. Its long, twilit shadows cast a kind
of circle at in�nity; the gnomon’s shadow sweeps out an in�nitely wide
complete circle.

4.6 �e kissing condition for parabolic shadows

A parabolic shadow is a unique intermediate case between the elliptic
shadows (which occur in the polar regions of tilted planets) and hyper-
bolic shadows (which occur everywhere else). A parabolic shadow oc-
curs when the sun’s daily circular path touches the horizon exactly once
during a full spin. We can show that this happens when the viewer’s lat-
itude (α) and the latitude of the subsolar point (β) are complementary.

Parabolic kissing condition. A sundial casts a parabolic
shadowwhen the sun touches the horizon exactly once dur-
ing the day.
�is happens only when the viewer and the subsolar point
are in the same hemisphere (neither can be at the equator)
and their latitudes are exactly complementary—the viewer
is as far from the pole as the subsolar point is from the equa-
tor.
Mathematically, the latitudes of the viewer (α) and the sub-
solar point (β) must satisfy

cos (α+ β) = 0, α, β 6= 0

Observations Because the subsolar point can’t be at the equator, parabolic
shadows only occur on tilted planets.

Because the latitude of the subsolar point is always changing, the
latitude where you can see a parabolic shadow is always changing. You
never get an exact parabolic shadow in the same place two days in a
row.

To derive the kissing condition, remember that the sun’s daily path is a

14�e mathematical solution is actually a pair of straight lines on top of each other—
the gnomon casts a real shadow from east to west during the day, then a phantom shadow
from west to east at night
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circle. In order for the circle to touch the horizon exactly once, it must
be resting with its lowest point directly on the horizon15.

Recall the formula for the height of the sun above the horizon and
set it equal to zero:

Nz(δ) = cosα cosβ sin δ + sinα sinβ = 0

�is is an expression involving the viewer’s latitude (α), the latitude
of the subsolar point (β), and the time of day (δ, an angle ranging from
0 to 2π over the course of one day and equal to π/2 at noon).

Right away, note that we must prevent the case where the coe�-
cient cosα cosβ is zero, because then the sun’s height won’t depend on
time of day—it’ll be at a constant height, which means it can’t cross the
horizon at exactly one value of δ. So we won’t allow the viewer or the
subsolar point to be at the poles α, β 6= ±π/2.

With that in mind, the sun’s unique lowest point occurs at midnight,
δ = −π/2, in which case its height is

Nz(−
π

2
) = − cosα cosβ + sinα sinβ

By a trigonometric identity, this is:

Nz(−
π

2
) = − cos (α+ β)

which is zero just when α + β = π
2 or α + β = −π2 . Combined with

our prior restriction that neither α nor β may be at the poles, this is the
kissing condition for parabolic shadows.

4.7 �e parabolic point teleports between the poles

On a tilted planet, there is always a unique spot where you can see a
parabolic sundial shadow—except during the equinoxes, when there is
no such spot. (Figure 11.)

4.8 �e handedness of circular motion depends on the
reference point

TODO
As previously discussed, clockwisemotion is always de�ned relative

to a particular viewing plane. Circular motion in a plane can be con-
sidered clockwise or counterclockwise, for example, based on if you’re

15Orwith its highest point directly on the horizon and the rest of it directly below—but
of course if the sun is below the horizon all day, it won’t cast a real parabolic shadow, only
a phantom one.
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Figure 11: On a tilted planet (obliquity q), there’s always a unique spot
where you can see a parablic shadow. It moves throughout the year
(green curve). At the equinoxes, the parabolic point disappears—and
reappears at the opposite pole. At all times, the latitudes of the sun
(red) and the parabolic point (green) are complementary angles.

looking at it from one side or the other. Similarly, a compass rose drawn
on the ground has the terms North, East, South, West occur in clockwise
order, whereas if that same compass rose is li�ed up above the viewer
and projected onto the sky, those directions appear in counterclockwise
order. �e handedness of the motion is always de�ned relative to a par-
ticular ‘facing’ direction,~z, even though this directionmight be implicit.

Given a viewing direction~z, angularmomentum de�nes the intrinsic
handedness of any motion: motion is counterclockwise if its angular
momentumhas a positive~z component and clockwise if it has a negative
~z component.

We can also de�ne an extrinsic kind of handedness: suppose an ob-
ject is moving through space along a path ~x(t). If I pick any arbitrary
pivot point ~y, I can ask whether the object is moving clockwise or coun-
terclockwise around that pivot. Of course, if the path ~x(t) is especially
wobbly, the answer may change in time. But we can determine the an-
swer by computing the angular momentum around the center point

~L0 ≡ (~x(t)− ~y)× ~x′(t)

and determining whether its ~z component is positive or negative.
�e interesting thing is that motion may be clockwise around its

own “intrinsic” center, and counterclockwise around another.
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For example, take clockwise motion in a circular loop. If the loop
doesn’t contain the origin, then as you can con�rm, its handedness rel-
ative to the origin pivot is clockwise half the time and counterclockwise
half the time.

For another extreme example, parabolic motion may be intrinsically
counterclockwise for all time, but extrinsically clockwise with respect
to the origin for all time. Check out the parabola ~x(t) = 〈t, t2 + 1〉 for
example.

�is is just to clear up a point about sundial shadows. In short-
hand, you can say that sundial shadows generally move clockwise when
you’re su�ciently far north and counterclockwise when you’re su�-
ciently far south. To be really explicit, this statement is about what
we’ve called the external handedness of the motion, relative to the ori-
gin of the sundial where the gnomon sits.

In fact the shadow itself moves intrinsically counterclockwise in the
northern hemisphere: from south west to due south to south east. But
on a real sundial, usually a circular clock dial has been drawn around
the origin. �e shadow’s motion, which is intrinsically counterclock-
wise around its center of motion is extrinsically clockwise around the
gnomon origin where the time is read o�.

4.9 �e handedness of a sundial

On an untilted planet (as well as on the equinoxes of a tilted planet), the
sun rises due west and sets due east, casting sundial shadows that move
in a straight line. In all other situations, the sundial shadow moves in
a curved arc, in either a clockwise or counterclockwise direction. �e
handedness depends on whether the viewer is north or south of the
sun’s latitude.

In general the rule is:

Sundial handedness. When a sundial’s latitude is north
of the sun, the sundial’s shadow moves clockwise (with re-
spect to its gnomon!) throughout the day. When a sundial’s
latitude is south of the sun, the shadow moves counter-
clockwise. Hence sundial shadows move clockwise in the
northern hemisphere and counterclockwise in the southern—
except within the tropics (latitude ±q) where handedness
depends on time of year.

To see this, note that if the sundial is north of the subsolar latitude,
then it will also cast shadows to the north. Hence the gnomon’s shadow
will move from the northwest (at sunrise) to due north (at noon) to
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northeast (at sunset). It moves from west to east on the northern side of
the gnomon, hence it moves clockwise around the gnomon.

An analogous argument applies when the sundial is south of the
subsolar latitude, in which case the sundial’s shadow moves counter-
clockwise around the gnomon. And of course, the same handedness
argument applies even in the polar regions where the sun may not set.

Beyond the northern tropic, the subsolar point is always to the south
year-round; hence north of the tropics, sundial shadows always move
clockwise. Similarly for the southern tropic and counterclockwise mo-
tion.

Within the tropics, the sun is sometimes to the north and some-
times to the south; hence, the shadow changes from counterclockwise
to clockwise and back depending on time of year, with perfectly straight
line motion (neither clockwise nor counterclockwise) when the sun is
directly overhead.

4.10 Sundials on comets

When we derived the daily motion of the sun, we assumed that the
planet’s days are much shorter than its years; that is, that the planet
completes a full spin around its axis much faster than it completes an
full orbit around its star.

Although not all planets work this way, at least our dear Earth does.
And it’s a convenient assumption because it allows us to assume that the
planet has basically no orbital movement over the course of the day—it’s
essentially spinning in place. �us the daily motion of the sun follows
circular paths because we, the viewers, are piroue�ing next to it.

Interestingly, then, these sundial results don’t depend on the shape
of the orbit. �ey apply even on other astronomical bodies. For example,
while planets are generally on closed, elliptical orbits, comets may be
on open orbits—parabolas or hyperbolas—that swoop just once around
the sun before �ying back into the in�nite dark.

But if you �nd a spinning comet out in space and put a sundial on it,
you can expect to see the same results we’ve derived here: assuming the
comet is spinning pre�y quickly relative to its orbital movement, you’ll
see the sun make an approximately circular daily path, and the sundial
will trace out a hyperbola, parabola, or ellipse based on howmany times
the sun’s path crosses the horizon16.

You could even keep a sundial on a spinning rocketship that’s us-
ing its engines to follow a zig-zagging path of its own. As long as the

16One obstacle you might encounter, if we pause our geometric daydreaming to think
of physics, is that the sun’s light gets dimmer the further away you get. Eventually a real
sundial’s shadow would become too faint to see!
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rocketship’s heading doesn’t change much, the sundial will exhibit the
usual range of behaviors.

4.11 Sundials on walls

On an ordinary sundial, the gnomon is in the~z direction, pointing straight
up. However, you could mount a gnomon on a tilted plane pointing in
some other direction ~n.

Under these conditions, wewant to know: howwill the sun’s shadow
appear on the plane at various latitudes? What are the conditions for
hyperbolic, parabolic, and elliptic shadows? �e example of a sundial
mounted on a west-facing wall (~n =

−−−→
west ) will provide concrete con-

text.
For a west-facing sundial, the usual north-west-up coordinate sys-

tem rotates into the north-down-west coordinate system. In the old
coordinate system, the motion of the sun is:

~N~z(δ) =

− sinα cosβ sin δ + cosα sinβ
− cosβ cos δ

cosα cosβ sin δ + sinα sinβ


From this new coordinate system, the daily motion of the sun be-

comes:

~N−−−→
west

(δ) =

− sinα cosβ sin δ + cosα sinβ
− cosα cosβ sin δ − sinα sinβ

− cosβ cos δ


What are the qualitative behaviors of this sundial? Note that the

height of the sun above the sundial is − cosβ cos δ. It is only visible
above the sundial in the a�ernoon (δ ≥ π/2). Furthermore, because
the sun’s motion becomes level with the gnomon twice a day at noon
and midnight (δ = ±π/2), the shadows of a west-facing gnomon are—
unusually—all hyperbolas, regardless of latitude and time of year.

In general, for any gnomon orientation ~n, there is a unique rotation
that sends ~z onto ~n, and the north-west-up coordinate system onto the
tilted gnomon’s coordinate system, by rotating around ~z × ~n. �e ex-
ception is ~n = −~z, in which case there are many possible rotations; we
will choose the one that sends north-west-up onto north-east-down.

Let us �nd the daily movement of the sun in a tilted gnomon’s co-
ordinate system. Any gnomon orientation ~n can be expressed in north-
west-up coordinates ~n = [nx, ny, nz], in which case
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5 Daylight on exotic orbits

5.1 Exotic daylight on comets

While planets are generally on closed, elliptical orbits, other astronomi-
cal bodies may be on open orbits—parabolas or hyperbolas—that swoop
just once around the sun before �ying back into the in�nite dark.

On an open orbit, a year is no longer a cycle. �ere are just two
epochs in eternity: approaching and receding.

How does the obliquity a�ect things?
How will the sun appear against the �xed stars? Will the sun ap-

proach some signs asymptotically—are there vanishing point constella-
tions?

(What if the orbit’s an ellipse?)

5.2 Sundials on comets

While planets are generally on closed, elliptical orbits, other astronomi-
cal bodies may be on open orbits—parabolas or hyperbolas—that swoop
just once around the sun before �ying back into the in�nite dark.

It’s interesting to consider what a sundial would see on an open
orbit.

6 Physics and other complications

6.1 �e atmosphere interacts with daylight

�e atmosphere lights up before the sun arrives and a�er it departs,
meaning that ‘civil’ sunrise and sunset don’t occur exactly when the
sun disappears behind the horizon.

As a compounding e�ect, the atmosphere bends light, warping the
apparent position of the sun.

6.2 �e precession of the equinoxes

6.3 Orbits are eccentric, not just circular

6.4 Orbital speed varies with position

6.5 Seasonal lag: On wet planets, temperature change
lags seasonal change
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