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Abstract

To collaborate effectively with humans in complex, dynamic
domains, robots need the ability to explain their knowledge,
decisions, and experience in human-understandable terms.
Towards this objective, this paper makes two contributions.
First, we present a theory of explanations that includes claims
about representing, reasoning with, and learning knowledge
to support the construction of explanations, three fundamen-
tal axes used to characterize explanations, and a methodol-
ogy for constructing these explanations. Second, we describe
a cognitive architecture for robots that implements this the-
ory and supports scalability to complex domains and expla-
nations. We demonstrate the working of this architecture in
the context of a simulated robot assisting humans by finding
and moving desired objects to target locations or people, or
by following recipes to bake biscuits.

1 Motivation

To collaborate effectively with humans in complex domains
such as warehouses and hospitals, it is important for a
robot to communicate its beliefs, decisions and experiences
in a suitable manner. Despite considerable research, it
is challenging to enable a robot to provide such explana-
tions. The robot often makes decisions based on different
descriptions of uncertainty and incomplete domain knowl-
edge. For instance, a robot in a university building may
know that “books are usually in the library”, and infer based
on processing sensor inputs that “the robotics book is in
Prof. X’s office with 90% certainty”. While reasoning with
this knowledge to compute a plan that achieves a given goal,
the robot evaluates different options using different perfor-
mance measures, e.g., “corridor-1 is a shorter path to the
library than corridor-2, but it is likely to be more crowded”.
In addition, the robot may acquire new knowledge by inter-
acting with humans or the domain, and this information may
complement or contradict the existing beliefs. Furthermore,
when a human does solicit an explanation, the robot needs
to provide the information in a suitable format and at an ap-
propriate level of abstraction for it to be useful.

We seek to formalize the process of explaining enacted
or computed plans to achieve a desired goal, the associated
knowledge and beliefs, and the experiences that informed
these beliefs, in the context of a robot assisting humans.
With the increasing use of machine learning and planning
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algorithms, “explainability” or “interpretability” is also be-
ing considered important to establish “trust” in these algo-
rithms. However, generating explanations by just reasoning
about assumed or actual action executions, or about the use
of axioms governing domain dynamics, may be perceived
as unsatisfactory, lacking information, computationally ex-
pensive, or likely to contain “too many implementation de-
tails” (Johnson 1994b). This paper is a step towards address-
ing these problems in the context of human-robot collabora-
tion and makes the following contributions:

1. Presents claims about representing, reasoning with, and
learning knowledge to support explanations.

2. Characterizes explanations along three axes based on ab-

straction of representation, explanation specificity, and
explanation verbosity, and presents a methodology for
constructing explanations.

3. Describes a cognitive architecture for robots that imple-

ments the theory of explanations comprising the proposed
claims, axes and methodology.

We illustrate the architecture’s capabilities in the context of
a simulated robot assisting humans by finding and deliver-
ing desired objects to target locations or people in an of-
fice building, or by following recipes to bake biscuits in a
kitchen. We use these examples to show that the theory and
architecture scale to complex domains and explanations. We
first review related work in Section 2, followed by the theory
of explanation and architecture in Section 3. Section 4 de-
scribes execution traces that demonstrate the architecture’s
capabilities, followed by the conclusions and directions for
further research in Section 5.

2 Related Work

Research in cognition, psychology and linguistics influ-
enced some of the early work on explanations, e.g.,
Friedman (1974) presented a theory of scientific explana-
tion in terms of generality, objectivity, and connectivity.
Grice (1975) characterized a cooperative response as be-
ing valid, sufficiently informative, relevant, and unambigu-
ous. The intersection of computing with these fields led
to the work on “explanation” tasks, e.g., explaining deci-
sions made by an agent (McKeown and Swartout 1987). Ex-
plainable Al is attracting a lot of attention in recent times



due to the increasing use of Al and machine learning (es-
pecially deep learning) algorithms in different applications.
Although humans do not need every such algorithm to pro-
vide detailed explanations, explainability does help establish
accountability and trust, and makes it easier to debug the al-
gorithms (Sheh 2017b).

Researchers have used human studies to identify prin-
ciples governing explanations (Brown and Kleeck 1989),
present a theory requiring explanations to be easy to under-
stand, context-specific and justifiable (Gregor and Benbasat
1999), and to emphasize the importance of the right way
to present information (Feiner and McKeown 1989). Prior
work on agents describing and justifying decisions, e.g., in
a tactical air-to-air combat domain (Johnson 1994a), indi-
cates that an agent should describe its activities, goals, ratio-
nale and experiences; answer questions; and provide expla-
nations in suitable formats based on a model of user beliefs.
Recent work on a framework for explaining the predictions
of any classifier (Koh and Liang 2017; Ribeiro, Singh, and
Guestrin 2016) also indicates that explanations must be in-
terpretable, responsive to user needs, and model-agnostic.

There is very little work on the kind of recounting (of
experiences, plans etc) that we are focusing on, but expla-
nations have been categorized into those of outcomes at
the system level (“reasoning trace explanations”), of strate-
gies at the problem-solving level (“strategic explanations™),
and of the reasons for states and actions (“deep explana-
tions”) (Southwick 1991). Sheh (2017a) distinguishes be-
tween three explanation “depths”, where model attributes,
the use of these attributes, or information about model gen-
eration, are considered for explanation; he also categorizes
explanations into: teaching, introspective tracing, introspec-
tive informative, post-hoc, and execution.

Very few approaches systematically identify the dimen-
sions characterizing explanations. In one recent work, a
robot use three axes (abstraction, specificity, locality) to ver-
balize its experience to humans (Rosenthal, Selvaraj, and
Veloso 2016). This effort, although interesting, uses hard-
coded methods for the specific task of traversing a building.
It does not generalize along these axes or to other domains,
e.g., locality determines the subset of the route to be pro-
vided to the explanation generator instead of using this in-
formation for explanation generation; specificity considers
the robot’s complete route at the first level, the sub-route
per floor of a specific building at second level, and so on.
The authors claim to derive the three axes from research on
user preferences (Dey 2009; Bohus, Saw, and Horvitz 2014;
Thomason et al. 2015), but these studies are too dissimilar
to the task of an agent narrating its experiences, and thus
do not support a general theory of explanations for human-
robot collaboration. In prior work, we outlined the ability of
agents to explain their decisions and the reasoning that pro-
duced these decisions (Langley et al. 2017). We also identi-
fied functional capabilities and the key elements of systems
designed for explainable agents. Here, we expand on these
ideas to provide a theory of explanation in the context of
human-robot collaboration.

3 Theory of Explanation and Architecture

In this section, we describe our theory of explanation (Sec-
tion 3.1), followed by an architecture that implements this
theory (Section 3.2).

3.1 Theory of Explanation

Based on insights gained from prior work, we have identified
the following guiding principles or claims for explanations
in human-robot collaboration:

1. Explanations should present context-specific information
relevant to the task, domain and/or the question under
consideration, at an appropriate level of abstraction.

2. Explanations should be able to describe knowledge, be-
liefs, actions, goals, decisions, rationale for decisions, and
underlying strategies or models in real-time.

3. Explanation generation systems should have minimal
task-specific or domain-specific components.

4. Explanation generation systems should model and use hu-
man understanding and feedback to inform their choices
while constructing explanations.

5. Explanation generation systems should use knowledge el-
ements that support non-monotonic revision based on im-
mediate or delayed observations obtained from active ex-
ploration or reactive action execution.

Based on these guiding principles, we propose three funda-
mental axes to characterize explanations:

1. (Representation abstraction) This axis models the lev-
els of abstraction at which knowledge is represented for
reasoning and explanation. For instance, the robot may
use a coarse-resolution domain description in terms of
rooms and the objects (e.g., cups, books) in these rooms,
or it may use a fine-resolution description in terms of grid
cells in the rooms and object parts (e.g., cup handle, cup
base) in these grid cells.

2. (Communication specificity) This axis models what the
robot focuses on while communicating with the human.
For instance, to explain the decision to traverse a longer
corridor instead of a shorter corridor, the robot may pro-
vide a: (i) brief explanation that considers the crowded-
ness of the corridors; or (ii) an elaborate explanation that
considers the crowdedness of the corridors, the robot’s en-
ergy levels and ability to move safely, and the objective of
maximizing task completion and safety.

3. (Communication verbosity) This axis models the com-
prehensiveness of the response provided. For instance,
when asked to explain the plan computed to achieve a par-
ticular goal, the robot may describe: (i) just the last action
in its plan and how it achieves the goal; (ii) all the the ac-
tions in the plan that results in the goal being achieved;
or (iii) all the actions along with the preconditions and
effects of each of them to show how the goal is achieved.

We also propose the following methodology to provide ex-
planations in response to questions from human users:

1. Choose a suitable position along each of three axes to pro-
vide explanations in response to a specific question.



2. Determine what needs to be described in the explanation.
This may take the form of one or more of knowledge el-
ements, beliefs, actions, goals, choices, and justification
for these choices.

3. Produce relevant, context-specific explanations that limit
the use of domain-specific knowledge. Construct verbal-
izations of these explanations to answer the user query.

4. Use human feedback to revise the choice in Step-1.

We next describe an architecture that implements this theory
and discuss its implications.

3.2 Cognitive Architecture

Figure 1 shows our overall architecture that reasons with
tightly-coupled transition diagrams at different resolutions.
Depending on the domain and tasks at hand, the robot
chooses to plan and execute actions at two specific reso-
lutions, but constructs explanations at other resolutions as
needed. For ease of explanation, we will focus on two res-
olutions, with the fine-resolution transition diagram defined
as a refinement of the coarse-resolution transition diagram;
we will discuss the extension to additional resolutions later
in the paper. For any given goal, non-monotonic logical rea-
soning with commonsense domain knowledge in the coarse
resolution provides a plan of abstract actions. Each ab-
stract transition is implemented as a sequence of concrete
actions by zooming to and reasoning with the relevant part
of the fine-resolution transition diagram. Each concrete ac-
tion is executed using probabilistic models of the uncer-
tainty in perception and actuation, with the outcomes added
to coarse-resolution history. Reasoning with commonsense
knowledge also informs and guides the interactive learning
of previously unknown actions, action capabilities and ax-
ioms. The architecture thus combines the complementary
strengths of declarative programming, probabilistic reason-
ing, and relational learning, and may be viewed as a logi-
cian and statistician working together. Some of these com-
ponents have been described in other papers (Gomez, Srid-
haran, and Riley 2018; Sridharan et al. 2018; Sridharan and
Meadows 2018). We focus on explanations and briefly de-
scribe all components using the following example domain.

Example Domain 1. [Robot Assistant (RA)]

A robot finds and delivers objects to people or places (study,
office, workshop, kitchen) in an indoor domain. Each
place may have instances of objects such as book and cup.
Each human has a role (e.g., engineer, manager, sales).
Objects have a size and color. Some other details include:

e The position of the robot and objects can change.

e The robot can move to a place, pick up or put down an
object, or deliver an object to a person.

e The domain may be viewed at different resolutions, e.g., a
place can be one or four rooms or one of four cells within
each room, and the robot may move an object to particular
rooms or particular cells.

Reasoning occurs in finite time steps with partial knowledge
of rules governing the domain dynamics, e.g., objects can
only be delivered to people in the same place as the robot.
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Figure 1: Architecture supports representation and reason-
ing with tightly coupled transition diagrams at different reso-

lutions. It combines the complementary strengths of declar-
ative programming and probabilistic reasoning.

Action Language Action languages are formal models
of parts of natural language used for describing transition
diagrams of dynamic systems. Our architecture uses ac-
tion language AL, (Gelfond and Inclezan 2013) to describe
the transition diagrams at different resolutions. ALy has a
sorted signature with statics, i.e., domain attributes whose
truth values cannot be changed by actions, fluents, i.e., do-
main attributes whose truth values can be changed by ac-
tions, and actions, a set of elementary operations. Fluents
can be basic, which obey inertia laws and can be changed by
actions, or defined, which do not obey the laws of inertia and
are not changed directly by actions. A domain attribute or its
negation is a literal. AL, allows three types of statements:
causal law, state constraint and executability condition.

Knowledge Representation The coarse-resolution do-
main description comprises a system description D, of
transition diagram 7., which is a collection of statements
of ALy, and history H.. D, includes a sorted signa-
ture X, and axioms. For the RA domain, Y. defines ba-
sic sorts such as place, thing, entity, robot, person,
object, cup and book, arranged hierarchically, e.g., object
and robot are subsorts of thing, a sort step for tem-
poral reasoning, and instances of sorts, e.g., roby, cupi,
books. For the RA domain, Y. includes statics such
as next_to(place, place) and obj_color(object, color), flu-
ents such as loc(thing, place) and in_hand(robot, object)
and actions move(robot, place), pickup(robot,object),
putdown(robot, object), and give(robot, object, person);
we can also include exogenous actions to explain unex-
pected observations. 3. also includes holds( fluent, step)
to imply that a particular fluent is true at a particular time
step. Next, D, for the RA domain includes axioms such as:

move(roby, P) causes loc(roby, P)
loc(O, P) if loc(roby, P), in_hand(roby,O)
impossible give(roby, O, P) if loc(roby, L1) # loc(P, Ls)



that describe the domain dynamics and are used for planning
and diagnostics. Finally, the history H,. expands the typical
definition, which is a record of fluents observed to be true or
false at a particular time step, obs( fluent, boolean, step),
and the occurrence of an action at a particular time step,
occurs(action, step), to represent defaults describing the
values of fluents in the initial state. For instance, H,. of the
RA domain encodes the statement “books are usually in the
library and if it not there, they are normally in the office”
and the exception “cookbooks are in the kitchen”. For more
details, including the model of history with initial state de-
faults, please see (Sridharan et al. 2018).

Reasoning with Knowledge Reasoning is performed by
translating the domain description to a program in CR-
Prolog, a variant of Answer Set Prolog (ASP) that incorpo-
rates consistency restoring (CR) rules (Balduccini and Gel-
fond 2003); we use the terms CR-Prolog and ASP inter-
changeably in this paper. ASP is based on stable model
semantics, and supports default negation and epistemic dis-
Jjunction, e.g., unlike “—a” that states a is believed to be
false, “not a” only implies a is not believed to be true, i.e.,
each literal can be true, false or “unknown”. ASP repre-
sents recursive definitions and constructs that are difficult
to express in classical logic formalisms, and supports non-
monotonic logical reasoning. For coarse-resolution reason-
ing, the program II(D,., H.) includes the signature and ax-
ioms of D,, inertia axioms, reality checks, closed world as-
sumptions for defined fluents and actions, and observations,
actions, and defaults from H.. Every default also has a
CR rule that allows the robot to assume the default’s con-
clusion is false to restore consistency under exceptional cir-
cumstances. An answer set of Il represents the set of beliefs
of the robot associated with II. Algorithms for computing
entailment, and for planning and diagnostics, reduce these
tasks to computing answer sets of CR-Prolog programs. We
compute answer sets using the SPARC system (Balai, Gel-
fond, and Zhang 2013).

Refinement, Zooming and Probabilistic Execution For
any given goal, the plan of abstract actions obtained by rea-
soning with II(D,, H.) cannot be executed directly. To im-
plement these abstract actions, we construct a fine-resolution
system description Dy of transition diagram 7; that is a
refinement of, and is tightly coupled to, D.. Refinement
may be viewed as looking through a magnifying lens, po-
tentially discovering domain structures that were previously
abstracted away. We only briefly describe refinement due to
space limitations; see (Sridharan et al. 2018) for details.

We first construct the weak refinement ignoring the robot’s
ability to observe the values of fluents. Signature Y.y in-
cludes (i) elements of ¥.; (ii) new sort for every sort of
Y. magnified by the increase in resolution; (iii) counter-
parts for each magnified domain attribute of . and ac-
tions with magnified sorts; and (iv) domain-dependent stat-
ics component(O*, O) relating magnified objects and their

counterparts. For the RA domain, basic sorts in Xy include:
place®™ = {c1,...,cm}, cup® = {cup; _base, cup, _handle}

where {c1, ..., ¢y, } are cells in places, base and handle are

components of cup, and “*” represents fine-resolution coun-
terparts. New domain attributes and actions of Xy include:

loc* (thing™, place™), next_to* (place™, place™)
move™ (robot, place™), in_hand”(robot, cup®)

Axioms of Dy are obtained by restricting the axioms of D,
to X¢, e.g., axioms of the RA domain include:

move*(R,C) causes loc*(R,C)
loc(O, P) if component(C, P), loc*(0O,C)

Next, our theory of observation expands Xy to in-
clude knowledge-producing action test(robot, fluent) that
checks the value of fluents and changes the value of knowl-
edge fluents that describe observations of fluents. Axioms
are added to Dy to encode the test actions, using suitable
domain-dependent defined fluents, e.g., to describe when the
robot can test the value of particular fluents. For each tran-
sition between coarse-resolution states o and o», there is a
path in 7 between a refinement of oy and a refinement of
oo—the proof is in (Sridharan et al. 2018).

Although Dy does not have to be revised unless the
domain changes significantly, reasoning with Dy becomes
computationally unfeasible for complex domains. In our ar-
chitecture, for each abstract transition 7' = (01, a’l, 09) €
Tr, the robot automatically zooms to and reasons with
D¢ (T'), the part of Dy relevant to T. To obtain Dy (T'),
the robot determines the object constants of 3. relevant to
T, restricts D, to these object constants to obtain D.(T),
computes the basic sorts of 3 ;(T") as those of ¥ that are
components of the basic sorts of D.(T'), restricts domain
attributes and actions of ¥ ;(T") to these basic sorts, and re-
stricts axioms of Dy to £¢(7T'). In the RA domain, if T =
(o1, move(roby, kitchen),o2) with loc(roby,office) €
o1, the basic sorts of X;(T) include robot = {rob},
place = {office, kitchen} and place* = {¢; : ¢; €
kitchenUo ffice}. Domain attributes include loc* (roby, C)
taking values from place*, loc(roby, P) taking values from
place ete, and actions include move*(roby, ¢;) and suitable
test actions. Restricting the axioms of Dy to X (T) re-
moves axioms for pickup and putdown, and irrelevant con-
straints. For any coarse-resolution transition 7, there is a
path in D¢ (T") between a refinement of ¢ (7") and a refine-
ment of o5(7T")—see (Sridharan et al. 2018) for the proofs.

Our prior work constructed a partially observable Markov
decision process from Dy(7T') to implement 7.  Since
this is computationally inefficient, we construct and solve
II(D4(T'), Hy) to obtain a sequence of concrete actions,
each of which is executed using existing algorithms (e.g.,
for path planning and object recognition) based on proba-
bilistic models of the uncertainty in sensing and actuation.
High-probability outcomes of a concrete action are elevated
to statements with complete certainty in /¢, and the out-
comes of reasoning with II(D(T'), Hs) are added to ..

Interactive Learning Reasoning with incomplete domain
knowledge can result in incorrect or suboptimal outcomes.
The robot can learn previously unknown actions and re-
lated axioms, but doing so in the most generic form may re-
quire many labeled examples, which is not always feasible in



robot domains. Also, humans may not have the time and ex-
pertise to provide labeled examples, and an action’s effects
may be immediate or delayed. For interactive acquisition of
labeled examples and knowledge, our architecture has two
schemes: (i) active learning of actions and causal laws from
human verbal descriptions of actions of other robots; and (ii)
cumulative learning of action capabilities (i.e., affordances)
and axioms using decision tree induction and relational re-
inforcement learning based on observations from active ex-
ploration or reactive action execution. For complete details,
please see (Sridharan and Meadows 2018).

Constructing Explanations To construct an explanation
in response to a query, the robot builds on the methodol-
ogy in Section 3.1. Existing implementations of algorithms
enable the robot to identify objects, actions and relations,
understand parts of speech and a controlled vocabulary, con-
struct sentences from templates based on the controlled vo-
cabulary, distinguish between physical entities and mental
concepts, and to solicit feedback from humans. The steps to
be followed are:

1. Parse input query to extract cues (e.g., part of speech and
words in vocabulary) indicating the objects, actions, and
relations of interest.

2. Select suitable point along the representation abstraction
axis. This is the resolution used for commonsense reason-
ing or action execution unless user query indicates other-
wise. Reuse point along this axis used in the most recent
interaction unless query indicates otherwise.

3. Choose points along specificity and verbosity axes based
on cues from query. Use these selections to translate ob-
ject references to descriptions. This includes the choice of
object attributes to use as modifiers, e.g., “a room” or “a
medium-sized, library room”, and the choice of reference

to relevant knowledge, e.g., “a library room”, “the library
room”, or study; all refer to the same place.

4. Reason with domain knowledge to identify relevant
knowledge elements (objects, actions, relations etc).
Transform elements to text descriptions using con-
trolled vocabulary and domain knowledge templates, e.g.,
pick_up(roby, books), where books is robotics book, pro-
vides “the robot picked up the robotics book”.

The choices made and the domain’s quantization influences
the language and ambiguity of the explanations, e.g., high
verbosity and high specificity descriptions are unambiguous
whereas low verbosity and low specificity descriptions are
confusing, and if rooms have 10 x 10 cells instead of 2 x 2
cells, the number of actions to achieve a goal and the length
of the explanations increase. The software implementation
of the control loop and the construction of explanations is
available in our repository (Meadows and Sridharan 2018).

4 Execution Examples

Our architecture’s ability to provide explanations is illus-
trated using Example Domain 1, a variant of this domain
(RA™) that explores the impact of quantization on explana-
tion, e.g., each room may have up to 100 cells (i.e., 10 x 10

grid) instead of four cells (i.e., 2 x 2 grid), and the following
domain based on the scenario in (Bollini et al. 2013).

Example Domain 2. [Robot Baker (RB)]

A robot baker in a kitchen has two work tables, one
for preparation and another with a toaster oven. For an
item to be baked, all ingredients (cocoa, sugar, flour,
cornflakes, and butter) are pre-measured and placed in
bowls on the table. Kitchen tools are characterized by
type (bowl, tray, oven), material (plastic, metal), size
(small, medium, large) and color (red, yellow, silver),
e.g, five plastic ingredient bowls of various sizes and colors,
a large mixing bowl, a metal oven tray, and a toaster oven.
Other details include:

e The robot has grasping and stirring manipulators.

e The domain may be viewed at different resolutions, e.g.,
the tools may be on the work table or in one of its six cells.

This domain’s encoding involves deeper sort hierarchies
than the RA domain, e.g., an object may be a mixing bowl,
which is a bowl, which is a container, which is an object,
which is a thing. Also, plans in the domain, which represent
recipes being followed, can be more varied, with many more
coarse and fine-resolution actions, e.g., to bake “Afghan
biscuits”, the robot has to pour, mix, scrape, preheat, re-
position, bake, etc, each of which can be represented by up
to ten fine-resolution actions.

Now, consider the following execution traces of explana-
tions. For ease of understanding, we omit some parts of the
explanations, depicting them as “[...]” in the text. We begin
with an example in the RA domain.

Execution Example 1. [Explanations in RA Domain]
Consider a robot in the RA domain that has just moved a
book to the study and delivered a book from the study to the
engineer in the office.

e Human: “Please describe the plan you executed.”
Robot: “[...] I moved to the study. I put down a small
programming book on table; . I picked up a large robotics
book from table;. I moved to the office. I delivered
the large robotics book to the engineer in the office. 1
achieved the goal.”

e When asked to provide a more detailed description, the
robot revises the operating point along the abstraction
axis; in the current implementation, the fine-resolution
description is used to generate an explanation.

Human: “Provide a more detailed description.”

Robot: “[...] I moved to cell co of the study, the room
at the end of the corridor. [...] I moved to cell ¢4 in the
study and put down a small programming book with a
hard cover on the table. I picked up the large robotics
book with a soft cover by its spine from the table. [...] I
moved to cell ¢y of the study. [...] I moved to cell ¢; of
the o ffice. I gave the large robotics book to the engineer.
I achieved the goal.”

e During planning or plan execution, the robot explains the
need for particular actions, and the direct and indirect ef-
fects of actions.

Human: “Why did you move to cell ¢4 of the study?”



Robot: “T had to put the small programming book on the
table. The table is in cell ¢4 of the study.”

e Human: “Relationally describe the effects of moving to
cell ¢4 of the study?”’
Robot: loc*(roby, celly), loc(roby, study).

Now, consider the effect of increasing the quantization, e.g.,
the RA* domain with a 10 x 10 grid of cells in each room
instead of the 2 x 2 grid in the RA domain. This increase in
quantization causes a significant increase in the number of
steps in the plans and in any explanation of the plans, espe-
cially in the fine resolution. For example, there are ~ 1000
steps in the explanation of the same plan described above.
However, as a result of refinement and zooming, there is
only a linear increase in the planning time and the robot is
able to provide explanations in real time. Similar results
were obtained with other execution scenarios in the RA do-
main. Next consider an execution trace in the RB domain.

Execution Example 2. [Explanations in RB Domain]
Consider the interaction of a robot baker with a human in the
R B domain. The robot has just completed a baking task.

e Human: “Please describe the plan you executed.”
Robot: “ [...] I poured the cocoa in the yellow small
ingredient bowl to a red large mixing bowl. I poured the
cornflakes in a red medium ingredient bowl to the red
large mixing bowl. I mixed the contents of the red large
mixing bowl. I scraped the mixture in the red large mixing
bowl to a metallic medium baking tray. I picked up the
silver metallic medium baking tray. I moved to tables
with the silver metallic medium baking tray in my hand.
I opened the silver toaster oven on tables. I put the silver
metallic medium baking tray in the silver toaster oven on
tables. 1 closed the silver toaster oven. I baked the silver
metallic medium baking tray in the silver toaster oven. I
waited for 20 minutes. I opened the silver toaster oven
on tables. I picked up the silver metallic medium baking
tray from the silver toaster oven. I put the silver metallic
medium baking tray on tables. [...] I achieved my goal.”

e When asked to provide more concise and relevant in-
formation, the robot moves its operating point along the
specificity and verbosity axes.

Human: “Provide a concise and relevant description.”
Robot:  “[...] I poured the cocoa in bowl; to
mazing-bowl;. 1 poured the cornflakes in bowls to
maxing_bowl;. 1 mixed the contents of mizing_bowl;.
I scraped the mixture in mizing_bowly to baking_tray;.
I picked up baking-tray;. 1 moved to tables. 1
opened toaster_oven; on tables. I put baking_tray; in
toaster_oveni. I baked baking_tray, in toaster_oveny
for 20minutes. I opened toaster_oven;. 1 picked up
baking_tray;. 1 put baking_tray; on tables. [...] 1
achieved my goal.”

o Human: “Please be more concise.”
Robot: “I preheated toaster_oven;. 1 mixed flour,
butter, sugar, cocoa, and corn flakes in mizing_bowl; .
I scraped the mixture to baking_tray;. 1 baked
baking_tray, in toaster_oven, for 20 minutes. I put
baking_tray, on tables. I achieved my goal.”

e The robot explains the need for, and can potentially ex-
plain the likelihood of, particular actions and outcomes
during planning or execution.

Human: “Why did you move the baking tray to tables?”
Robot: “I need to put the baking tray in the toaster oven
that is on tabley.”

Human: “How likely is it that there is cocoa in the small
yellow ingredient bowl?”

Robot: “T am 95% sure there is no cocoa left in the small
yellow ingredient bowl.”

Similar results were obtained for other scenarios and ques-
tions in the domains considered in this paper.

5 Discussion and Future Work

The ability to explain its beliefs, decisions and experience
is important for a robot collaborating with humans. In this
paper, we first presented a theory of explanations compris-
ing (i) claims about representing, reasoning with, and learn-
ing knowledge to support effective explanations; (ii) three
axes to characterize explanations; and (iii) a methodology
for constructing explanations. This theory is motivated by
insights from existing studies and our work on designing
cognitive architectures for human-robot collaboration. Next,
we described a cognitive architecture for knowledge repre-
sentation, reasoning and learning, which also implements
the proposed theory. We described execution traces illus-
trating the automatic construction of suitable explanations
in response to queries from humans. Although we focused
on explanations in this paper, the overall architecture uses
tightly-coupled transition diagrams at different resolutions
to support non-monotonic logical reasoning with common-
sense knowledge and probabilistic reasoning with quantita-
tive models of the uncertainty in sensing and actuation.

The proposed theory and architecture open up many di-
rections for further research. First, this paper focused on
one coarse-resolution and one fine-resolution description
for ease of explanation. However, other experiments (not
reported here) indicate that the definitions of refinement,
zooming and relevance used here readily apply to additional
resolutions as well. The tight coupling between the reso-
lutions result in smooth transfer of information and control
between the different resolutions. In future work, we will
more thoroughly explore the automatic transition between
multiple resolutions on demand, constructing explanations
at the level of abstraction desired by the user the robot is
interacting with. Second, our current architecture does not
yet provide partial explanations or revise the operating point
along the three axes with respect to only part of the observa-
tions (or history) being explained. It is possible to provide
such partial explanations by limiting reasoning to the desired
part of the history. Third, we will conduct studies with hu-
man subjects to evaluate the effectiveness and usability of
our theory and architecture. These studies will also provide
important feedback that can be used to revise the claims,
methodology and the representation encoded in the archi-
tecture. Finally, we will also explore the extension of this
architecture to teams of robots and humans collaborating to
achieve a shared objective in complex domains.
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