1 A matrix with all row and column sums equal to k

Suppose A is an $n \times n$ matrix of zeroes and ones, and that $A^{2}=J$, the matrix of all ones. Show that:

1. Every row and column of A adds up to the same number, k.
2. The number k satisfies $k^{2}=n$, where n is the size of the matrix.
3. The matrix A has exactly k ones along the diagonal.

Proof. The first trick is to note that matrix multiplication by J actually computes the column/row sums of a matrix: For any order- n matrix M, let r_{1}, \ldots, r_{n} be its row sums. Note that by matrix multiplication rules, $M J$ is the matrix of row sums:

$$
M J=\left[\begin{array}{cccc}
r_{1} & r_{1} & \ldots & r_{1} \\
r_{2} & r_{2} & \ldots & r_{2} \\
\vdots & \vdots & & \vdots \\
r_{n} & r_{n} & \ldots & r_{n}
\end{array}\right]
$$

and similarly $J M$ is the matrix of column sums.

1. The row/column sums are k. We know that $A^{2}=J$. Hence:

$$
A^{3}=A J=J A \text {, when we multiply by } A \text {. }
$$

But $A J$ computes the row sums of A, and $J A$ computes the column sums. If they're equal, it means that each row and column of A adds up to the same number- call it k. (The sum k must be positive because A consists of zeroes and ones, and A is not the zero matrix.)

Hence we can write $A J=J A=k J$ (the matrix where each entry is k.)
2. The number $k^{2}=n$. We can show that $J^{2}=n J$, because the sum of every row/column of J is just n. But because $A J=k J$, we also know that
$J^{2}=J A^{2}=J A A=(J A) A=(k J) A=k(J A)=k(k J)=$ $k^{2} J$

Hence $J^{2}=n J$ and also $J^{2}=k^{2} J$
In other words, $k^{2}=n$.
3. A has exactly k ones along the diagonal. We can show that there are exactly k ones along the diagonal using some facts about eigenvalues.

If A consists of zeroes and ones, then the number of ones along the diagonal is equal to the sum of the values along the diagonal. This is the trace of matrix A. Hence we need to show that the trace of A is equal to k. The trace of a matrix is also equal to the sum of its (generalized) eigenvalues, so it suffices to show that A has exactly one (nonzero) generalized eigenvalue, namely k.

We already know that $A J=k J$. Looking at a single column, it follows that the vector of all ones is an eigenvector of A with eigenvalue k.

Combining $A J=k J$ with $A^{2}=J$, we find that $A^{3}=k A^{2}$.
The generalized eigenvector formula is $(A-\lambda I)^{n} v=0$. In particular, for the eigenvalue $\lambda=0$, this becomes $A^{n} v=0$. Because $A^{3}=k A^{2}$, we can prove by induction that $A^{n}=k^{n-2} A^{2}$, so $A^{n} v=0$ just if $A^{2} v=0$.

Hence v is a generalized eigenvector of A with eigenvalue 0 just if $A^{2} v=J v=0$. But $J v$ returns a vector where each entry is the sum of all the entries in v; hence $J v=0$ just if the entries of v sum to zero. The set of all such vectors has dimension $n-1$ (it's the set of vectors
perpendicular to $[1,1, \ldots, 1]$) and so 0 is a generalized eigenvalue of A with multiplicity $n-1$.

But an $n \times n$ matrix has exactly n generalized eigenvalues. Hence k must be one of them, and 0 (counting multiplicities) must be the rest.

It follows that the trace of A is equal to $k=k+0+0+\ldots+0$, which proves that A has exactly k ones along the diagonal.

Generalizations As an aside, none of these results really depend on A being a matrix of zeroes and ones. In fact, using the same reasoning as above, we can prove the following general result for any $M^{r}=J$:

Let $r \geq 1$ be an integer and suppose M is any $n \times n$ matrix with $M^{r}=J$. Then each row and each column of M will sum to $k \equiv n^{1 / r}$; the trace of M will be equal to k (not any power; still just k itself); and if M consists of zeroes and ones, it will have exactly k ones along the diagonal.

Concrete construction If you want a concrete construction of matrices A with the above property: define the matrix $M[k, r, a]$ to be an order k^{r} matrix with

$$
M[k, r, a]_{i, j}=\left[1 \text { if }\left(0 \leq i k^{a}+j<k^{a}\right) \quad\left(\bmod k^{r}\right) ; 0 \text { otherwise }\right]
$$

This complicated formula is better explained by visual example:

$$
M[k=2 ; r=3 ; a=1]=\left[\begin{array}{ccccccccc}
1 & 1 & & & & & & \\
& & 1 & 1 & & & & \\
& & & & 1 & 1 & & \\
1 & & & & & & 1 & 1 \\
1 & 1 & & & & & & \\
& & 1 & 1 & & & & \\
& & & & 1 & 1 & & \\
& & & & & & 1 & 1
\end{array}\right]
$$

where the length of the runs is determined by k^{a}, and the size of the matrix is determined by k^{r}.
Then I claim without proof that that $A \equiv M[k, r, 1]$ is an order $-k^{r}$ matrix with $A^{r}=J$.

More generally, I expect $M[k, r, a] \cdot M[k, r, b]=M[k, r, a+b]$. (In particular, $M[k, r, 0]$ is the order $-k^{r}$ identity matrix.)

Problem sources

https://math.stackexchange.com/questions/2516152/
a-has-all-line-sums-equal-to-a-positive-number-k/2516281\#
2516281
https://math.stackexchange.com/questions/2517206/
a-regular-connected-graph-has-k-loops/2519392?noredirect=1

