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Abstract

A nomogram for F(u, v, w) = 0 consists of three curves in the plane
γi : R → R2, parameterized by u, v, and w respectively. Specifying a
value of u and v, you can draw the line through γ1(u) and γ2(v), find
where the line intersects γ3, and read off the solution w = ŵ(u, v) which
satisfies the equation F(u, v, w) = 0.

The line has a particular slope A(u, v) and y-intercept B(u, v). Because
nomograms are well-behaved, the correspondence ⟨u, v⟩ ←→ ⟨A, B⟩ is
actually a smooth invertible change in coordinates. And if you happen to
know the functions A(u, v) and B(u, v), you can uniquely recover all three
curves γi. The formula, as I show here, is:

γi ◦ χi(u, v) ≡
〈
− J(B, χi)

J(A, χi)
, B− A · J(B, χi)

J(A, χi)

〉
.

Here, J(p, q) denotes the Jacobian ∂p
∂x

∂q
∂y −

∂p
∂y

∂q
∂x . And we’ve defined

the ‘variable-solving’ functions: χ1(u, v) ≡ u, χ2(u, v) ≡ v, and χ3(u, v) ≡
ŵ(u, v)—each of them takes u and v and solves for one of u, v, or w, re-
spectively.

A geometric curiosity is that the right hand side of this equation bears
a family resemblance to the equation for finding the x-intercept of the line
y = ax + b (as x0 = −b/a), and then plugging that intercept back into the
equation for line (as y = b + ax0).

Preliminaries A nomogram for F(u, v, w) = 0 consists of three curves in the
plane γi : R→ R2, parameterized by u, v, and w respectively.

Without loss of generality, we’ll pick w to be the designated distinguished
variable among the three, and write ŵ(u, v) as the function that is implicitly
defined by solving F(u, v, w) = 0 for the variable w.
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Nomographic scales never intersect The first well-behaved condition is that
nomographic scales never intersect. In other words, given any pair of values
u and v, we can plot the corresponding points on their curves γ1(u) and γ2(v)
and draw the unique line through them.

Note that we can specify that line using the pair of values ⟨u, v⟩ or by spec-
ifying the slope A(u, v) and intercept B(u, v) of the line. (I call A(u, v) the slope
field and B(u, v) the intercept field. The line drawn through the nomographic
scales is sometimes called an isopleth line.)

The second well-behaved condition is that, conversely, if we draw any line
through the plane, it’ll intersect each nomographic scale in (at most) one point.
In the next section, I’ll show how if you know A(u, v) and B(u, v), you can
solve uniquely for the curves γ1 and γ2 (and in fact γ3).

The correspondence ⟨u, v⟩ ↔ ⟨A, B⟩ is a coordinate transform The curves
of a nomogram are well behaved. From this fact that we can uniquely specify
pairs of points on our two curves either using the parameters ⟨u, v⟩ or by using
the slope-intercept ⟨A, B⟩means that the correspondence

⟨u, v⟩ ↔ ⟨A, B⟩

is actually a coordinate transform — that is to say, a smooth invertible transfor-
mation where every pair has a unique counterpart. The formal way of saying
this is that the Jacobian J(A, B) ≡ ∂A

∂u
∂B
∂v −

∂A
∂v

∂B
∂u is nonzero everywhere.

1 Solving for the curve γi given the isopleth line

Suppose you know the slope field A(u, v) and intercept field B(u, v) and you
want to recover the parametric curve γ1(u) from it.

This is actually fairly easy to do: fix a value of u and pick two values
v1 ̸= v2. Then we’ll have the two lines corresponding to ⟨A(u, v1), B(u, v1)⟩
and ⟨A(u, v2), B(u, v2)⟩, whose unique point of intersection will tell us where
γ1(u) is. 1

We will assume v1 and v2 are sufficiently close to each other, both for
smoothness reasons—if they’re sufficiently close points on a well-behaved

1Detail checking: You might worry about the pathological case where these two lines don’t
have a unique point of intersection—if the lines are parallel or identical. But in fact, this patholog-
ical case can’t happen as long as v1 and v2 are sufficiently close. This is because nomogrammable
functions are ‘well-behaved’ — roughly speaking, if you keep u fixed and perturb v a little bit,
the isopleth line must necessarily change to pass through the new point on the v scale. And yet
the line still passes through the same ‘pivot’ point on the u scale, so the change must have altered
the slope of the isopleth line—the new line is not parallel to the old line.
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nomogramic scale, the two lines ⟨A1, B1⟩ and ⟨A2, B2⟩ cannot be parallel—
and because in the end we’ll take the limit as v2 → v1 so that we can express
our answer neatly in terms of partial derivatives of A and B.

As we will show, the coordinates of the point γ1(u) = ⟨ f1(u), g1(u)⟩ can
be recovered as2: 

f1(u) = −
∂2B(u, v)
∂2 A(u, v)

g1(u) = B(u, v)− A(u, v) · ∂2B(u, v)
∂2 A(u, v)

(1)

Here’s a nice geometric observation in passing: these equations bear a sort
of family resemblance to the formula for finding the x-intercept of the line
y = ax + b—namely x0 ≡ −b/a— and for plugging that value back in to the
original equation: y = ax0 + b.

Proof of the isopleth recovery formula for γ1(u). Fix a value u and fix two
values we’ll call v and v + dv (anticipating the final step where we’ll take a
limit dv→ 0). The pairs ⟨u, v⟩ and ⟨u, v+ dv⟩ define two lines ⟨A(u, v), B(u, v)⟩
and ⟨A(u, v+ dv), B(u, v+ dv)⟩. At their intersection is the point γ1(u) which
we’re trying to recover in terms of A and B.

The ⟨x, y⟩ coordinates of that point satisfy two linear equations, namely
the equations that say that the point lies on each of our lines:

{
y = A(u, v) x + B(u, v)
y = A(u, v + dv) x + B(u, v + dv)

In matrix form, this is the same as:[
−A(u, v) 1

−A(u, v + dv) 1

] [
x
y

]
=

[
B(u, v)

B(u, v + dv)

]
To solve this system of equations, we’ll have to invert that coefficient ma-

trix on the left. Its inverse is:

1
A(u, v + dv)− A(u, v)

[
1 −1

A(u, v + dv) −A(u, v)

]
,

which means our solution is given by:

2Note that I use Spivak notation such as ∂1 p(x, y) and ∂2 p(x, y) instead of the usual ∂p/∂x and
∂p/∂y, respectively. The notation ∂i p means “the derivative of p with respect to its ith argument.”
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[
x
y

]
=

1
A(u, v + dv)− A(u, v)

[
1 −1

A(u, v + dv) −A(u, v)

] [
B(u, v)

B(u, v + dv)

]

=
1

A(u, v + dv)− A(u, v)

[
B(u, v)− B(u, v + dv)

A(u, v + dv)B(u, v)− A(u, v)B(u, v + dv)

]

In the second row, we’ll cleverly add and subtract an extra A(u, v)B(u, v)
term to make it look more like some derivatives:

[
x
y

]
=

1
A(u, v + dv)− A(u, v)

[
B(u, v)− B(u, v + dv)

[A(u, v + dv)− A(u, v)]B(u, v)− A(u, v)[B(u, v + dv)− B(u, v)]

]

Multiplying and dividing by dv, then taking the limit as dv→ 0 :

[
x
y

]
=

dv
A(u, v + dv)− A(u, v)

 B(u, v)− B(u, v + dv)
dv

A(u, v + dv)− A(u, v)
dv

B(u, v)− A(u, v)
B(u, v + dv)− B(u, v)

dv


dv → 0
=

1
∂2 A(u, v)

[
−∂2B(u, v)

∂2 A(u, v) · B(u, v)− A(u, v) · ∂2 A(u, v)

]

In short, after some slight algebraic simplification, we’ve solved for the x
and y coordinates of our point γ1(u):

x = − ∂2B(u, v)
∂2 A(u, v)

y = B(u, v)− A(u, v) · ∂2B(u, v)
∂2 A(u, v)

2 A unified formula for recovering the curves from the
isopleth

We’ve seen how to recover γ1(u) from the isopleth’s slope field A(u, v) and
intercept field B(u, v), namely

γ1(u) =
〈
− ∂2B

∂2 A
, B− A · ∂2B

∂2 A

〉
An exactly analogous argument lets you recover γ2(v) as

γ2(v) =
〈
− ∂1B

∂1 A
, B− A · ∂1B

∂1 A

〉
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It is also possible to solve for our third curve γ3(w), though the situation
is a little different because we are dealing with our distinguished variable w.
Note, for example, that A(u, v) and B(u, v) are functions of u and v only, and
so we cannot really put them together to obtain a function of w—instead, the
appropriate concept here is to solve for γ3(ŵ) = γ3(ŵ(u, v)). With basically
the same trick as before—we pick two nearby points on the u curve and two
nearby points on the v curve such that ⟨u1, v1⟩ and ⟨u2, v2⟩ have the same
ŵ(u, v) value3, then find the intersection of the corresponding lines—we find,
after much algebra crunching, that:

γ3 ◦ ŵ =

〈
− J(B, ŵ)

J(A, ŵ)
, B− A · J(B, ŵ)

J(A, ŵ)

〉
,

where J represents the Jacobian. In fact, all three formulas can be put into
common form. If we know the values of u and v, we know we can solve for
w = ŵ(u, v). We can also trivially “solve” for u or v. Let us define the three
variable-solving functions:

χ1(u, v) = u

χ2(u, v) = v

χ3(u, v) = ŵ(u, v)

Then we can compactly represent all three of our formulas as:

γi ◦ χi(u, v) =
〈
− J(B, χi)

J(A, χi)
, B− A · J(B, χi)

J(A, χi)

〉
Because in fact J(·, χ1) = −∂2 and J(·, χ2) = ∂1 are just partial derivative

operators.

3 A corollary about A and B

In more ordinary language, we might have written our first two equations as:

γ1(u) =
〈
− ∂2B

∂2 A
, B− A · ∂2B

∂2 A

〉
3You can do this by finding your first pair ⟨u, v⟩. Then use the gradient of ŵ(u, v) to find a

nearby pair ⟨u′, v′⟩ that have the same ŵ value. This is always possible because if you move a
little bit on the u scale, you can always move a compensatory amount on the v scale so that the
isopleth still passes through the same point on the w scale as before.
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γ2(v) =
〈
− ∂1B

∂1 A
, B− A · ∂1B

∂1 A

〉
then the fact that the left sides are functions of one variable means that if we
take the derivative with respect to the other variable, we’ll get an expression
equal to zero.

What we will do now is essentially that same operation in a more high-
brow notation. The Jacobian J has the property that for any smooth p : R2 →
R1 and q : R2 → R2, the Jacobian of p ◦ q and q vanishes everywhere:

J(p ◦ q, q) = 0.

You can prove this using the chain rule. Qualitatively, the Jacobian mea-
sures the degree to which two functions are independent, and so the Jacobian
of q and a function of q is zero everywhere because they’re completely depen-
dent.

It will also be useful to know the product rule and chain rule for Jacobians
(properties which are easy to derive by working through the definition of the
Jacobian).

J(p/q, r) =
qJ(p, r)− pJ(q, r)

q2

J(p · q, r) = pJ(q, r) + qJ(p, r)

J(p ◦ q, r) = (Dp ◦ q) · J(q, r)

With those tools in hand, let us return to our isopleth equation:

γi ◦ χi(u, v) =
〈
− J(B, χi)

J(A, χi)
, B− A · J(B, χi)

J(A, χi)

〉
If we apply the Jacobian operator J(−, χi) to both sides, we get zero on the

left, as J(γi ◦ χi, χi) = 0. On the right, we apply our Jacobian rules and find:

0 = − J(A, χi) · J[J(B, χi), χi] − J(B, χi) · J[J(A, χi), χi]

J(A, χi)2

(Technically, our original expression was a vector with two components,
so we should have two components here too—but as it turns out, when we
calculate the second component we get A(u, v) times the first component, and
since both components are equal to zero, the content is redundant.)
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Cryptic Gronwall footnote

A ≡ +
J
(
− J(B,v)

J(A,v) , v
)
· J(A, v)2

J(A, B)

B ≡ −
J
(
− J(B,u)

J(A,u) , u
)
· J(A, u)2

J(A, B)

C ≡ +
J(J(A, B), v)− 3 · J(−J(B, v)/J(A, v), u) · J(A, v)2

J(A, B)

D ≡ − J(J(A, B), u)− 3 · J(−J(B, u)/J(A, u), v) · J(A, u)2

J(A, B)

C ≡ +
J(J(A, B), v)− 3 · f ′1(u) · J(A, v)2

J(A, B)

D ≡ − J(J(A, B), u)− 3 · f ′2(v) · J(A, u)2

J(A, B)
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