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Finding the relationship between two coordinate systems by using pairs of measurements of the coordinates of a
number of points in both systems is a classic photogrammetric task. The solution has applications in stereophoto-
grammetry and in robotics. We present here a closed-form solution to the least-squares problem for three or more
points. Currently, various empirical, graphical, and numerical iterative methods are in use. Derivation of a closed-
form solution can be simplified by using unit quaternions to represent rotation, as was shown in an earlier paper [J.
Opt. Soc. Am. A 4, 629 (1987)]. Since orthonormal matrices are used more widely to represent rotation, we now
present a solution in which 3 X 3 matrices are used. Our method requires the computation of the square root of a
symmetric matrix. We compare the new result with that obtained by an alternative method in which orthonormality
is not directly enforced. In this other method a best-fit linear transformation is found, and then the nearest
orthonormal matrix is chosen for the rotation. We note that the best translational offset is the difference between
the centroid of the coordinates in one system and the rotated and scaled centroid of the coordinates in the other
system. The best scale is equal to the ratio of the root-mean-square deviations of the coordinates in the two systems
from their respective centroids. These exact results are to be preferred to approximate methods based on
measurements of a few selected points.

1. ORIGIN OF THE PROBLEM

Suppose that we are given the coordinates of a number of
points as measured in two different Cartesian coordinate
systems (see Fig. 1). The photogrammetric problem of re-
covering the transformation between the two systems from
these measurements is referred to as that of absolute orien-
tation. 1 -3 It occurs in several contexts, foremost in relating
a stereo model developed from pairs of aerial photographs to
a geodetic coordinate system. It also is of importance in
robotics, in which measurements in a camera coordinate
system must be related to coordinates in a system attached
to a mechanical manipulator. Here we speak of the deter-
mination of the hand-eye transform.4

A. Previous Work
The problem of absolute orientation is usually treated in an
empirical, graphic, or numerical, iterative fashion.1-3

Thompson5 gave a solution to this problem for the case in
which exactly three points are measured. His method, as
well as the simpler one of Schut, 6 depends on selective ne-
glect of the extra constraints available when all coordinates
of three points are known, as is discussed in Subsection 1.B.
Schut used unit quaternions and arrived at a set of linear
equations. A simpler solution that does not require the
solution of a system of linear equations was presented in a
precursor of this paper.7 These three methods all suffer

from the defect that they cannot handle more than three
points. Perhaps more importantly, they do not even use all
the information available from the three points.

Oswal and Balasubramanian8 developed a least-squares
method that can handle more than three points, but their
method does not enforce the orthonormality of the rotation
matrix. Instead, they simply find the best-fit linear trans-
form. An iterative method is then used to square up the
result, bringing it closer to being orthonormal. Their meth-
od for doing this is iterative (and without mathematical
justification). In addition, the result obtained is not the
solution of the original least-squares problem.

We study their approach in Section 4 by using a closed-
form solution for the nearest orthonormal matrix derived in
Subsection 3.F. This is apparently not entirely novel, since
an equivalent problem was treated in the psychological liter-
ature.9 -1 5 The existing methods, however, cannot deal with
a singular matrix. We extend our method to deal with the
case in which the rank deficiency of the matrix is 1. This is
an important extension, since the matrix is singular when
either of the sets of measurements is coplanar, as is always
the case when there are only three measurements.

The main result presented here, however, is the closed-
form solution to the least-squares problem of absolute orien-
tation. Our new result can be applied in the special case
when one or the other of the sets of measurements happens
to be coplanar. This is important because sometimes only
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Fig. 1. The coordinates of a number of points are measured in two
coordinate systems. The transformation between the two systems
can be found by using these measurements.

three points are available, and three points are, of course,
always coplanar. The solution that we present differs from
the schemes discussed at the beginning of this section in that
it does not selectively neglect information provided by the
measurements: it uses all the information.

We should point out that a version of this problem was
solved by Farrel and Stuelpnagel.16 However, their solution
applies only when neither of the sets of measurements is
coplanar. We also learned recently that Arun et al.17 inde-
pendently developed a solution to an equivalent problem.
They used a singular-value decomposition of an arbitrary
matrix instead of the eigenvalue-eigenvector decomposition
of a symmetric matrix inherent in our approach.

B. Minimum Number of Points
The transformation between two Cartesian coordinate sys-
tems can be thought of as the result of a rigid-body motion
and can thus be decomposed into a rotation and a transla-
tion. In stereophotogrammetry, in addition, the scale may
not be known. There are obviously three degrees of freedom
to translation. Rotation has another three (the direction of
the axis about which the rotation takes place plus the angle
of rotation about this axis). Scaling adds one more degree of
freedom. Three points known in both coordinate systems
provide nine constraints (three coordinates each), more than
enough to allow determination of the seven unknowns, as
shown, for example, in Ref. 7. By discarding two of the
constraints, we can develop seven equations in seven un-
knowns that permit us to recover the parameters.

C. Least Sum of Squares of Errors
In practice, measurements are not exact, and so greater
accuracy in determining the transformation parameters is
sought by using more than three points. We no longer
expect to be able to find a transformation that maps the
measured coordinates of points in one system exactly into
the measured coordinates of these points in the other. In-
stead, we minimize the sum of the squares of the residual
errors. Finding the best set of transformation parameters is
not easy. Various empirical, graphic, and numerical pro-
cedures are currently in use.1-3 These are all iterative in
nature; that is, given an approximate solution, such a meth-
od is applied repeatedly until the remaining error becomes
negligible.

At times, information is available that permits us to ob-
tain so good an initial guess of the transformation parame-
ters that a single step of the iteration brings us close enough
to the true solution of the least-squares problem for all
practical purposes, but this is rare.

D. Closed-Form Solution
In this paper we present a closed-form solution to the least-
squares problem of absolute orientation, one that does not
require iteration. One advantage of a closed-form solution
is that it provides us in one step with the best possible
transformation, given the measurements of the points in the
two coordinate systems. Another advantage is that it is not
necessary to find a good initial guess, as it is when an itera-
tive method is used.

A solution to this problem was presented previously in
which unit quaternions are used to represent rotations.7

The solutions for the desired quaternion was shown to be the
eigenvector of a symmetric 4 X 4 matrix associated with the
largest positive eigenvalue. The elements of this matrix are
simple combinations of sums of products of coordinates of
the points. To find the eigenvalues, one must solve a quartic
equation whose coefficients are sums of products of elements
of the matrix. It was shown that this quartic equation is
particularly simple, since one of its coefficients is zero. It
simplifies even more when only three points are used.

E. Orthonormal Matrices
Whereas unit quaternions constitute an elegant representa-
tion for rotation, most of us are more familiar with the use of
proper orthonormal matrices for this purpose. Working
directly with matrices is difficult because of the need to deal
with six nonlinear constraints that ensure that the matrix is
orthonormal. We nevertheless are able to derive a solution
for the rotation matrix by using direct manipulation of 3 X 3
matrices. This closed-form solution requires the computa-
tion of the positive semidefinite square root of a positive
semidefinite matrix. We show in Subsection 3.C how such a
square root can be found once the eigenvalues and eigenvec-
tors of the matrix are available. Finding the eigenvalues
requires the solution of a cubic equation.

The method discussed here finds the same solution as does
the method presented previously,7 which uses unit quaterni-
ons to represent rotation, since it minimizes the same error
sum. We present the new method only because the use of
orthonormal matrices is so widespread. We actually consid-
er the method using unit quaternions to be more elegant.

F. Symmetry of the Solution
Let us call the two coordinate systems "left" and "right." A
desired property of a solution method is that, when it is
applied to the problem of finding the best transformation
from the left to the right system, it gives the exact inverse of
the best transformation from the left system to the right
system. It was shown in Ref. 7 that the scale factor must be
treated in a particular way to guarantee that this happens.
The method that we develop here for directly computing the
rotation matrix gives two apparently different results when
it is applied to the problem of finding the best transforma-
tion from left to right and the problem of finding the best
transformation from right to left. We show that these two
results are in fact different forms of the same solution and
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that our method does indeed have the desired symmetry
property.

G. Nearest Orthonormal Matrix
Since the constraint of orthonormality leads to difficulties,
some authors chose to find a 3 X 3 matrix that fits the data
best in a least-squares sense without a constraint on its
element.8 The result is typically not orthonormal. If the
data are fairly accurate, the matrix may be almost orthonor-
mal. In this case, we wish to find the nearest orthonormal
matrix; that is, we wish to minimize the sum of the squares of
differences between the elements of the matrix obtained
from the measurements and an ideal orthonormal matrix.
Iterative methods exist for finding the nearest orthonormal
matrix.

A closed-form solution, shown in Subsection 3.F, again
involves square roots of 3 X 3 symmetric matrices. The
answer obtained by this method is different, however, from
that obtained by the solution that minimizes the sum of the
squares of the residual errors. In particular, it does not have
the highly desirable .symmetry property discussed above,
and it requires the accumulation of a larger number of sums
of products of coordinates of measured points.

2. SOLUTION METHODS

As we shall see, the translation and the scale factor are easy
to determine once the rotation is known. The difficult part
of the problem is finding the rotation. Given three noncol-
linear points, we can easily construct a useful triad in each of
the left and right coordinate systems7 (see Fig. 2). Take the
line from the first to the second point to be the direction of
the new x axis. Place the new y axis at a right angle to the
new x axis in the plane formed by the three points. The new
z axis is then made orthogonal to the x and y axes with an
orientation chosen to satisfy the right-hand rule. This con-
struction is carried out in both the left and the right systems.
The rotation that takes one of these constructed triads into

'1

, x
Fig. 2. Three points can be used to define a triad. Such a triad can
be constructed by using the left measurements. A second triad is
then constructed from the right measurements. The required coor-
dinate transformation can be estimated by finding the transforma-
tion that maps one triad into the other. This method does not use
the information about each of the three points equally.

the other is also the rotation that relates the two underlying
Cartesian coordinate systems. This rotation is easy to find,
as is shown in Ref. 7.

This ad hoc method constitutes a closed-form solution for
finding the rotation from three points. Note that it uses the
information from the three points selectively. Indeed, if we
renumber the points, we obtain a different rotation matrix
(unless the data happen to be perfect). Also note that the
method cannot be extended to deal with more than three
points. Even with only three points we should really attack
this problem by means of a least-squares method, since there
are more constraints than unknown parameters. The least-
squares solutions for translation and scale are given in Sub-
sections 2.B and 2.C. The optimum rotation is found in
Section 4.

A. Finding the Translation
Let there be n points. The measured coordinates in the left
and right coordinate systems are denoted by

{rl,j), {rrsi),

respectively, where i ranges from 1 to n. We are looking for a
transformation of the form

rr = sR(rl) + ro

from the left to the right coordinate system. Here s is a scale
factor, ro is the translational offset, and R(r1 ) denotes the
rotated version of the vector rl. We do not, for the moment,
use any particular notation for rotation. We use only the
fact that rotation is a linear operation and that it preserves
lengths so that

||R(rj) 112=1 lr 112,

where 11 r 112 = r * r is the square of the length of the vector r.
Unless the data are perfect, we cannot find a scale factor, a

translation, and a rotation such that the transformation
equation above is satisfied for each point. Instead there is a
residual error,

ej = rri - sR(r1,j) - ro.

We minimize the sum of the squares of these errors,

n

i= 1

(It was shown in Ref. 7 that the measurements can be
weighted without changing the basic solution method.)

We consider the variation of the total error first with
translation, then with scale, and finally with respect to rota-
tion.

B. Centroids of the Sets of Measurements
It turns out to be useful to refer all measurements to the
centroids defined by

n
_ 1YJ =- sI rlj,

i=1

1n
rr = -- I rri

i=1

Let us denote the new coordinates by

rj = rl - rl, rrji = rri - rr

Horn et al.



1130 J. Opt. Soc. Am. A/Vol. 5, No. 7/July 1988

Note that

n

E rlIj = 0,
i=1

rri = °
i=l

The error term can now be rewritten in the form

ei = rri- sR(rl,i) -ro

where

rO = ro- ir + sR(!r,).

The sum of the squares of the errors becomes
n

E1 ||r, - sR(r;,) - rjl|2,

or
n n

E rr - sR(r;i) I2 - 2r' * [ri - sR(r;,i)] + nIlr' 12.
i=1 i=1

Now the sum in the middle of this expression is zero, since
the sum of the vectors lrij and the sum of the vectors Irr i} are
zero, as mentioned above. As a result, we are left with the
first and the third terms. The first term does not depend on
r0 , and the last cannot be negative. The total error obvious-
ly is minimized with rO = 0, or

ro = Yr - sR(YI);

that is, the translation is just the difference of the right
centroid and the scaled and rotated left centroid. We return
to this equation to find the translational offset once we have
found the scale and rotation. This method, which uses all
the available information, is to be preferred to one that uses
only measurements of one or a few selected points to esti-
mate the translation.

At this point we note that the error term can be simplified
to read as

ei = rri - sR(rl),

since rO = 0, and so the total error to be minimized is just

n

i=l
|Frri - sR(r;,i) 112.

C. Symmetry in Scale
It was shown in Ref. 7 that the formulation of the error term
given in Subsection 2.B leads to an asymmetry in the deter-
mination of the optimal scale factor; that is, the optimal
transformation from the left to the right coordinate system
is then not the exact inverse of the optimal transformation
from the right to the left coordinate system. The latter
corresponds to use of the error term

ei = ri - (1/s)RT(rr),
or

ei = -[(1/s)(rri) - R(r;)],

and leads to a total error to be minimized of

I(/s)(rri) - R(r1,) l2

If the errors in both sets of measurements are similar, it is
more reasonable to use a symmetrical expression for the
error term:

ei =-r,,i - sR(r;).

The total error then becomes
n n n

1 E |r'ril2 - 2 rri - [R(rl1,)] + s E1rjl',

1=1 i=1 i=1

or

1 Sr - 2D + sSI,
S

where

n

SI = Z Ilr',.11',

i=1
D = E r',i * [R,(r;.)]

i=1

n

Sr = E r1rill2.
i=1

Completing the square in s, we obtain

(vCS -i FS,)+ 2(,ISiSr -D).

This is minimized with respect to the scale s when the first
term is zero or when s = V/373-i, that is,

n /n \1/2
S - ~ r E JrI|2/ EIr',i 112

One advantage of this symmetrical result is that it permits
us to determine the scale without knowledge of the rotation.
Importantly, however, the determination of the rotation is
not affected by the choice of the value of the scale factor. In
each case the remaining error is minimized when D is as large
as possible; that is, we must choose the rotation that makes

n

Err~i - [R(rli))
i=l

as large as possible.

3. DEALING WITH ROTATION

There are many ways to represent rotation, including Euler
angles, the Gibbs vector, Cayley-Klein parameters, Pauli spin
matrices, axis-and-angle systems, orthonormal matrices,
and Hamilton's quaternions.18 19 Of these representations,
orthonormal matrices are used most often in photogramme-
try, graphics, and robotics. Although unit quaternions have
many advantages when used to represent rotation, few in-
vestigators are familiar with their properties. We therefore
present here a closed-form solution that uses orthonormal
matrices and is similar to the closed-form solution obtained
earlier that uses unit quaternions.7

The new method, which we present in this section, de-
pends on the eigenvalue-eigenvector decomposition of a 3 X
3 matrix and so requires the solution of a cubic equation.
Well-known methods such as Ferrari's solution can be
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used.'9 -21 When one or the other (left or right) set of mea-
surements is coplanar, the method simplifies, in that only a
quadratic equation needs to be solved. It turns out, howev-
er, that much of the complexity of this approach stems from
the need to deal with this and other special cases.

A. Best-Fit Orthonormal Matrix
We must find a matrix R that maximizes

n n

3 rr i-* [R(rj,j)] = E (r'ri)T R(ri).
i=1 i=1

Now

aTRb = Tr(RTabT),

so we can rewrite the above expression in the form

Tr[RT r 4i(rg)7j = Tr(RTM),

where

n

M = r'ri(rli)T,
i=1

that is,

M= SYX SYy Syz I

-Szx Szy Szz 

with

n

Sxx = 3 XriXli
i=1

n

Sx = 3 XriYli, * * *s
i=1

and so on. (We denote the elements of the matrix by Sx,
Sxy,... rather than by MX,, Mxy,.. . in order to be consistent
with Ref. 7.)

To find the rotation that minimizes the residual error, we
must find the orthonormal matrix R that maximizes

Tr(RTM).

B. Product of Orthonormal and Symmetric Matrices
It follows from Theorem 1 on p. 169 of Ref. 22, that a square
matrix M can be decomposed into the product of an ortho-
normal matrix U and a positive semidefinite matrix S. The
matrix S is always uniquely determined. The matrix U is
uniquely determined when M is nonsingular. (We show in
Subsection 3.D that U can also be determined up to a two-
way ambiguity when M is singular with a rank deficiency of
i.) When M is nonsingular, we can actually write directly

M= US,

where

S= (MTM)1/2

is the positive definite square root of the symmetric matrix
MTM, while

U= m(MTm -1/2

is an orthonormal matrix. It is easy to verify that M = US,
ST = S. and UTU = I.

C. Positive Definite Square Root of Positive Definite
Matrix
The matrix MTM can be written in terms of the set of its
eigenvalues {As} and the corresponding orthogonal set of unit
eigenvectors {iQ as follows:

MTM = XUU 1 + X2U2U2 + X33 U 3 .

(This can be seen by checking that the expression on the
right-hand side has eigenvalues IXi} and eigenvectors f4.)

Now MTM is positive definite, so the eigenvalues are posi-
tive. Consequently, the square roots of the eigenvalues are
real, and we can construct the symmetric matrix

S = X UU 1T + aUUT + C, uUT.

It is easy to show that

S2 = Xl~llT + ftT + 3UUT MTM,

using the fact that the eigenvectors are orthogonal. Also, for
any nonzero vector x,

XTSX = XI(Ui _ x)2 + X,(U2 x) 2 + X(U, *)2 > 0.

We see that S is positive definite, since XI > 0, X, > 0, and X3
> 0. This construction of S = (MTM)1/2 applies even when
some of the eigenvalues are zero; the result then is positive
semidefinite (rather than positive definite).

D. Orthonormal Matrix in the Decomposition
If all the eigenvalues are positive, then

S-1 = (MTM) 112 = 1 U lflT + 1 CIUT + ft UUT,_X 1 uT 1 1> k2 F> 33

as can be verified by multiplying by S. This expansion can
be used to calculate the orthonormal matrix

U = MS-1 = M(MTM)-L/2.

The sign of det(U) is the same as the sign of det(M), because

det(U) = det(MS-1) = det(M)det(S-1),

and det(S51) is positive, as all its eigenvalues are positive.
Thus U represents a rotation when det(M) > 0 and a reflec-
tion when det(M) < 0. (We expect always to obtain a rota-
tion in our case. Only if the data are severely corrupted may
a reflection provide a better fit).

When M has a rank of only 2, the above method for con-
structing the orthonormal matrix breaks down. Instead, we
use

U= M( I C1,6 + T ~2 3

or
U MS+ ± U3U3 ,

where S+ is the pseudoinverse of S, that is,

S+ = t'r i2T + r T

and d3 is the eigenvector with zero eigenvalue. The sign of

Horn et al.



1132 J. Opt. Soc. Am. A/Vol. 5, No. 7/July 1988

the last term in the expression for U above is chosen to make
the determinant of U positive. It is easy to show that the
matrix constructed in this fashion is orthonormal and pro-
vides the desired decomposition M = US.

E. Maximizing the Trace
We must maximize

Tr(RTM) = Tr(RTUS),

where M = US is the decomposition of M discussed above.
From the expression for S in Subsection 3.C, we see that

Tr(RTUS) = FX Tr(RTU lT) + X2 Tr(RTUd2 2)

+ X3Tr(RTUu 3 3).

For any matrices X and Y, such that X Y and YX are square,
Tr(XY) = Tr(YX). Therefore

Tr(RTUfiiC1T) = Tr(etTRT Ufi) = Tr(Rii- Ufi) = (Rii- Uii).

Since fii is a unit vector and both U and R are orthonormal
transformations, we have (Rfii - Ufi) < 1, with equality if and
only if Rfi, = Uui. It follows that

Tr(RTUS) < A1 + A 2 + V;3 = Tr(S),

and the maximum value of Tr(RTUS) is attained when RTU
= I, or R = U. Thus the orthonormal matrix that we seek is
the one that occurs in the decomposition of M into the
product of an orthonormal matrix and a symmetric one. If
M is not singular, then

R = M(MTM)-1/ 2 .

If M has a rank of only 2, however, we must resort to the
second method discussed in Subsection 3.D to find R.

F. Nearest Orthonormal Matrix
We can now show that the nearest orthonormal matrix R to a
given nonsingular matrix M is the matrix U that occurs in
the decomposition of M into the product of an orthonormal
matrix and a positive definite matrix; that is,

U = M(MTM)-1/2

We wish to find the matrix R that minimizes
3 3

E (Mii - rij)' = Tr[(M - R)T(M - R)],

subject to the condition that RTR = I; that is, we must
minimize

Tr(MTM) - 2Tr(RTM) + Tr(RTR).

Now RTR = I, so we conclude that the first and third terms
do not depend on R. The problem then is to maximize

Tr(RTM).

We conclude immediately, using the result of Subsection
3.E, that the nearest orthonormal matrix to the matrix M is
the orthonormal matrix that occurs in the decomposition of
M into the product of an orthonormal matrix and a symmet-
ric matrix.

Thus the orthonormal matrix that maximizes the residual
error in our original least-squares problem is the orthonor-
mal matrix nearest to the matrix

M = 3 r'ri(r;,i)T.

i=l1

We note here that this orthonormal matrix can be found
once an eigenvalue-eigenvector decomposition of the sym-
metric 3 X 3 matrix MTM has been obtained.

G. Rank of the Matrix M
It is clear that the rank of MTM is the same as the rank of M,
since the two matrices have exactly the same eigenvectors
with zero eigenvalue. The first method for finding the de-
sired orthonormal matrix applies only when M, and hence
MTM, is nonsingular.

If, on the other hand,

Mn, = 0

for any nonzero vector n1, then the matrix M, and hence
MTM, is singular. This happens when all the left measure-
ments lie in the same plane, that is, when

r;- n, = 0

for i = 1, 2,_.. , n, where n, is normal to the plane, since
n \ n

Mn, = ri r,i(rT) n, = r3 ri* n1) = 0.

Similarly, if all the right measurements lie in the same plane,
then

rri nr = 0,
where nr is a normal to the plane, and so MTnr = 0. Now
det(MT) = det(M), so this implies that M is singular also.
As a result, we cannot use the simple expression

U = M(MTM-1/ 2

to find the orthonormal matrix when either of the two sets of
measurements (left or right) is coplanar. This happens, for
example, when there are only three points.

If one or both sets of measurements are coplanar, we must
use the second method for constructing U, which is given in
Subsection 3.D. This method requires that the matrix M
have a rank of 2 (which is the case unless the measurements
happen to be collinear, in which case the absolute orienta-
tion problem does not have a unique solution). Note that
the second method requires the solution of a quadratic equa-
tion to find the eigenvalues, whereas a cubic equation must
be solved in the general case. We might, by the way, antici-
pate possible numerical problems when the matrix M is ill
conditioned, that is, when one of the eigenvalues is nearly
zero. This happens when one of the sets of measurements
lies almost in a plane.

H. Symmetry in the Transformation
If, instead of finding the best transformation from the left to
the right coordinate system, we decided to find the best
transformation from the right to the left, then we would have
to maximize

n

3 (rl~)X"r',i
i=l1
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by choosing an orthonormal matrix R. We can immediately
write down the solution

RM ~ T(mmT)-112,
since M becomes MT when we interchange the left and right
systems. We would expect RT to be equal to R, but, much to
our surprise,

RT= (MMT) 1/ 2M.

This appears to be different from

R = M(MTM)-1 12,

but, in fact, they are equal. This is so because

[M-l(MMT)l/M]2 = M-1(MMT)M = MTM.

Taking inverses and square roots, we obtain

M-l(MMT)-l/ 2M = (MTM)-112,

and, premultiplying by M, we find that
RT = (MMT)-1/ 2M = M(MTM)-1/ 2 = R.

I. Finding the Eigenvalues and Eigenvectors
We must find the roots of the cubic equation in X obtained
by expanding

det(MTM - AI) = 0,

where MTM is

SIX+ S+ + +52 S+ SXY + xxSXY +Sx),yz S.S. + Szxz +S.S.

SXX + SySy +SSIyS 2 + S2 + S2 SX SX, + SySy + S .

S~S~ S~~)~ +~~S~S~S~+S S + 2 + 2 + SI 

d2 = Tr(MTM),

so

=(S2X + SI + S2) + (S2X + Sb 2

+ Syz') + (Szx + Szy + SI ),

while

do= det(M TM) = [det(M)] 2

or

do=1SXSY~Z+ S,''ZZ + SySS'

-(SXXSyzSZY + SyySZXS + Z1X S)2

4. IGNORING THE ORTHONORMALITY

Since it is so difficult to enforce the six nonlinear constraints
that ensure that the matrix R is orthonormal, it is tempting
just to find the best-fit linear transformation from the left to
the right coordinate system. This is a straightforward least-
squares problem. We can then try to find the nearest
orthonormal matrix to the one obtained in this fashion. We
show that this approach actually involves more work and
does not produce the solution to the original least-squares
problem. In fact, the result is asymmetric, in that the best-
fit linear transform from left to right is not the inverse of the
best-fit linear transform from right to left. Furthermore, at
least four points must be measured, whereas the method

Having found the three solutions of the cubic equation, Ai for
i = 1, 2, 3 (all real and, in fact, positive), we then solve the
homogeneous equations

(MTM- AiI),fi = 0

to find the three orthogonal eigenvectors it for i = 1, 2, 3.

J. Coefficients of the Cubic Equation
Suppose that we write the matrix MTM in the form

a d f
MTM d b e

f e c_

where a = (S2X + Sy + SI~) and so on; then

det(MTM - AI) = 0

can be expanded as

-A3 + d2A
2 + d1A + do + 0,

where
d2= a + b + c,

d, = (e2 - bc) + (f2 - ac) + (d2 - ab),

do = abc + 2def - (ae2 + bf2 + cd2).

We may note at this point that

that enforces orthonormality requires only three. We dis-
cuss this approach in this section.

A. Best-Fit Linear Transformation
We must find the matrix X that minimizes

n
3 II ri- Xr- i 112
i=l 

or

[ 11 r',i 11' - 2r'r,i . (Xrl,i) + 11 Xr; i 1121.

Since X is not necessarily orthonormal, we cannot simply
replace JXr;,iIJ2by Ilrl iIJ2. Notethat lIx2 = x.xandthatx-

y = Tr(xyT). The sum above can be rewritten in the form

3Tr[r'ri(r,)T - 2ri(rui)TXT+ Xri(ri)TXJ]
i=1

= Tr(XAX T - 2MXT + Ar),

where

n n
Al = 3 r',i(r;,i)T, Ar = 3 rr,,(r ,,)

i=1 i=1
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are symmetric 3 X 3 matrices obtained from the left and
right sets of measurements, respectively.

We can find the minimum essentially by completing the
square. First, we use the fact that Tr(MXT) = Tr(XTM) to
rewrite the above expression in the form

Tr(XAIXT - MXT - XMT + MAT 'MT)

+ Tr(Ar -MAT1M'T).
The second term does not depend on X, and the first term
can be written as the trace of a product:

Tr[(XA, - M)(X - MAT') T).

Now it is easy to see that Al is positive semidefinite. In fact,
the matrix Al is positive definite, provided that at least four
measurements are available that are not collinear. This
means that Al has a positive definite square root and that
this square root has an inverse. As a result, we can then
rewrite the above expression in the form

Tr[(XA'/2 - MA"I 2)(XAJ /
2

- mA-1" 2
)

- |XA 1 I-MAT"2

This is zero when

XA =/2 - MAT 1/2

or

X =MA-'.

B. Asymmetry in the Simple Linear Solution
It is easy to find X by multiplying M by the inverse of Al.
Note, however, that we are using more information here than
before. The method that does enforce orthonormality re-
quires only the matrix M. Also note that Al depends on the
left measurements alone. This suggests an asymmetry. In-
deed, if we minimize instead

n
3 1r',, - Xrr'r i 2,

we obtain

X=MTA-l.

In general, X is not equal to X-', as one might expect.
Neither X nor X need be orthonormal. The nearest or-

thonormal matrix to X is shown in Subsection 3.F to be
equal to

R = X(XTX)-l/ 2 = (XXT)-1/ 2X

whereas the matrix nearest to X is

R = X(X T X)- 1 12 = (XX T )-1/2X.

Typically RT 5 R.

C. Relationship of Simple Linear Solution to Exact
Solution
We know from Subsection 3.F that the solution of the origi-
nal least-squares problem is the orthonormal matrix closest
to M. The simple best-fit linear solution instead leads to

the matrix MAT1. The closest orthonormal matrix to MAT'
in general is not equal to that closest to M. To see this,
suppose that

M= US, MA` = U'S'

are the decompositions of M and MAT' into orthonormal
and positive definite matrices; then

US = U'(S'Al).

For the solutions to be identical (that is, U = U'), we would
need to have

S = SA,

but the product of two symmetric matrices is, in general, not
symmetric; so, in general, U' 54 U.

D. Disadvantage of the Simple Linear Method
The simple linear method does not lead to an orthonormal
matrix. The closest orthonormal matrix can be found, but
that requires just as much work as that required for the exact
solution of the original least-squares problem. In addition,
the simple linear method requires that twice as many data be
accumulated (Al or Ar in addition to M). Furthermore, the
linear transformation has more degrees of freedom (nine
independent matrix elements) than does an orthonormal
matrix, so more constraint is required. Indeed, for Al or Ar
to be nonsingular, at least four points must be measured.
This is a result of the fact that the vectors are taken relative
to the centroid, and so three measurements do not provide
three independent vectors. More seriously, this method
does not produce the solution to the original least-squares
problem.

5. CONCLUSION

We presented here a closed-form solution of the least-
squares problem of absolute orientation, using orthonormal
matrices to represent rotation. The method provides the
best rigid-body transformation between two coordinate sys-
tems, given measurements of the coordinates of a set of
points that are not collinear. A closed-form solution using
unit quaternions to represent rotation was given previously.7
In this paper we derive an alternative method that uses
manipulation of matrices and their eigenvalue-eigenvector
decomposition. The description of this method may per-
haps appear to be rather lengthy. This is the result of the
need to deal with various special cases, such as that of copla-
nar sets of measurements.

We show here that the best scale is the ratio of the root-
mean square deviations of the measurements from their
respective centroids. The best translation is the difference
between the centroid of one set of measurements and the
scaled and rotated centroid of the other measurements.
These exact results are to be preferred to ones based on
measurements of one or two points only.

We contrast the exact solution of the absolute orientation
problem to various approaches advocated in the past. The
exact solution turns out to be easier to compute than one of
these alternatives. The solution presented here may seem
relatively complex. The ready availability of program pack-
ages for solving algebraic equations and finding eigenvalues
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and eigenvectors of symmetric matrices makes implementa-
tion straightforward, however. Methods for finding the ei-
genvectors efficiently were discussed in Ref. 7. It should
also be noted that we deal only with 3 X 3 matrices here.
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