
J. Functional Programming 6 (3): 527–534, May 1996 c© 1996 Cambridge University Press 527

FUNCTIONAL PEARLS

Drawing Trees

ANDREW J. KENNEDY
University of Cambridge Computer Laboratory

New Museums Site, Pembroke Street
Cambridge CB2 3QG, United Kingdom

Abstract

This article describes the application of functional programming techniques to a problem
previously studied by imperative programmers, that of drawing general trees automati-
cally. We first consider the nature of the problem and the ideas behind its solution (due
to Radack), independent of programming language implementation. We then describe a
Standard ML program which reflects the structure of the abstract solution much better
than an imperative language implementation. We conclude with an informal discussion on
the correctness of the implementation and some changes which improve the algorithm’s
worst-case time complexity.

1 The problem and its solution

The problem is this: given a labelled tree, assign to each node a position on the
page to give an aesthetically pleasing rendering of the tree. We assume that nodes
at the same depth are positioned on the same horizontal line on the page, so the
problem reduces to finding a position horizontally for each node. But what do we
mean by “aesthetically pleasing”? The various papers on the subject (Radack, 1988;
Wetherell and Shannon, 1979; Vaucher, 1980; Reingold and Tilford, 1981; Walker,
1990) list aesthetic rules which constrain the positions in a number of ways. We
adopt the same rules as Radack and Walker:

1. Two nodes at the same level should be placed at least a given distance apart.
2. A parent should be centred over its offspring.
3. Tree drawings should be symmetrical with respect to reflection—a tree and

its mirror image should produce drawings that are reflections of each other. In
particular, this means that symmetric trees will be rendered symmetrically.
So, for example, Figure 1 shows two renderings, the first bad, the second good.

4. Identical subtrees should be rendered identically—their position in the larger
tree should not affect their appearance. In Figure 2 the tree on the left fails
the test, and the one on the right passes.

Finally, trees should be as narrow as possible without violating these rules.



528 Andrew J. Kennedy

A

B

C D E

F G

H I J

A

B

C D E

F G

H I J

Fig. 1. A symmetric tree rendered in two ways

A

B

C D E

F

G

H I J

A

B

C D E

F

G

H I J

Fig. 2. A tree with two identical subtrees

The layout problem is solved as follows. First, draw all the subtrees of a node in
such a way that none of the rules are broken. Fit these together without changing
their shape (otherwise rule 4 is broken), and in such a way that rules 1 and 3 are not
broken. Finally centre their parent above them (rule 2) and the layout is complete.

The critical operation is the fitting together of subtrees. Each subtree has an
extent—an envelope around the subtree. Because the shape of the subtrees must
not be distorted, their extents are simply fitted together as tightly as possible.
Unfortunately, the overall positioning of the subtrees depends on the order we
choose to perform this fitting. Figure 3 shows two different arrangements of the
same extents.

We can choose a left bias for this ‘gluing’ effect, by starting with the leftmost
subtree, or a right bias instead. To satisfy rule 3, we simply do both and take the
average; this approach was also taken by Radack.

In the rest of the article some familiarity with a functional language is assumed.
We use Standard ML (Paulson, 1991; Milner et al., 1989), but any functional lan-
guage, strict or lazy, would do just as well.

A

B C D

E F

G H I

A

B C D

E F

G H I

Fig. 3. Two arrangements



Functional pearls 529

2 Representing trees

First we define a general tree datatype, using ML’s polymorphism to parameterise
the type of the node values:

datatype ’a Tree = Node of ’a * (’a Tree list)

This simply says that a node consists of a value (of type ’a) and a list of subtrees.
Our algorithm will accept trees of type ’a Tree and return positioned trees of

type (’a*real) Tree. The second element of the node value represents the node’s
horizontal position, relative to its parent . Rule 2 suggests that we should use real

values for this purpose; in fact, rationals with finite binary representations would
suffice.

Because we have chosen to use relative positions, the operation of displacing a
tree horizontally can be done in constant time:

fun movetree (Node((label, x), subtrees), x’ : real) =

Node((label, x+x’), subtrees)

3 Representing extents

The extent of a tree is represented by a list of pairs:

type Extent = (real*real) list

The first component of each pair records the leftmost horizontal position at a par-
ticular depth, and the second component records the rightmost. The head of the
list corresponds to the root of the tree. In contrast with the tree representation, the
positions in an extent are absolute.

A trivial function to move an extent horizontally will be useful:

fun moveextent (e : Extent, x) = map (fn (p,q) => (p+x,q+x)) e

It will also be necessary to merge two non-overlapping extents, filling in the gap
between them. This is done simply by picking the leftmost positions of the first
extent and the rightmost positions of the second:

fun merge ([], qs) = qs

| merge (ps, []) = ps

| merge ((p,_)::ps, (_,q)::qs) = (p,q) :: merge (ps, qs)

Notice how we must deal with extents of different depths.
This operation can be extended to a list of extents by the following function:

fun mergelist es = fold merge es []

This is a nice example of the functional style. The functional fold is used to apply
the binary operation merge between all extents in the list. Informally, it is defined
as:

fold (⊕) [x1, x2, . . . , xn] a = x1 ⊕ (x2 ⊕ (· · · (xn ⊕ a) · · ·))



530 Andrew J. Kennedy

A

B C D

E F

G H I
=⇒

A

B C D

E F

G H I

Fig. 4. Merging extents

where ⊕ is a two argument function written as an infix operator which associates
to the right. We could have used a left-associating version of fold instead because
merge is associative. Readers familiar with Haskell or another functional program-
ming language should note carefully the order of the arguments to fold: this is the
order used in most implementations of Standard ML.

An example of the use of mergelist is shown in Figure 4.

4 Fitting extents

First we define a function which determines how close to each other two trees may
be placed, assuming a minimum node separation of 1. Of course when the tree is
drawn this is scaled appropriately. The function accepts two extents as arguments
and returns the minimum possible distance between the two root nodes:

fun rmax (p : real, q : real) = if p > q then p else q

fun fit ((_,p)::ps) ((q,_)::qs) = rmax(fit ps qs, p - q + 1.0)

| fit _ _ = 0.0

Now we extend this function to a list of subtrees, calculating a list of positions
for each subtree relative to the leftmost subtree which has position zero. It works
by accumulating an extent, repeatedly fitting subtrees against it. This produces an
asymmetric effect because trees are fitted together from the left.

fun fitlistl es =

let

fun fitlistl’ acc [] = []

| fitlistl’ acc (e::es) =

let val x = fit acc e

in

x :: fitlistl’ (merge (acc, moveextent (e,x))) es

end

in

fitlistl’ [] es

end

The opposite effect is produced from the following function which calculates posi-
tions relative to the rightmost subtree, which has position zero. The function rev

is ordinary list reversal, and ~ is negation.



Functional pearls 531

fun fitlistr es =

let

fun fitlistr’ acc [] = []

| fitlistr’ acc (e::es) =

let val x = ~(fit e acc)

in

x :: fitlistr’ (merge (moveextent (e,x), acc)) es

end

in

rev (fitlistr’ [] (rev es))

end

Alternatively, it is possible to define fitlistr in terms of fitlistl by the following
composition of functions:

val flipextent : Extent -> Extent = map (fn (p,q) => (~q,~p))

val fitlistr = rev o map ~ o fitlistl o map flipextent o rev

In order to obtain a symmetric layout we calculate for each subtree the mean of
these two positionings:

fun mean (x,y) = (x+y)/2.0

fun fitlist es = map mean (zip (fitlistl es, fitlistr es))

5 Designing the tree

We are now ready to combine these elements into a single function design which
accepts a labelled tree and returns a positioned tree with the root at zero. In fact,
we will use an auxiliary function design’ which also returns the extent of the tree.
This saves us from recalculating extents unnecessarily.

fun design tree =

let

fun design’ (Node(label, subtrees)) =

let

val (trees, extents) = unzip (map design’ subtrees)

val positions = fitlist extents

val ptrees = map movetree (zip (trees, positions))

val pextents = map moveextent (zip (extents, positions))

val resultextent = (0.0, 0.0) :: mergelist pextents

val resulttree = Node((label, 0.0), ptrees)

in

(resulttree, resultextent)

end

in

fst (design’ tree)

end



532 Andrew J. Kennedy

A

B

C

D E

F

G H

I J K L

M N

O

P

Q R

S

T

U V W

X

Y

Z

a b c d

e

f

g

h i

j

k l m n

o

p

q

r s t u

v

w x

y z

0 1

2

Fig. 5. An example rendering

It works as follows. First, recursively design all the subtrees. This results in a list
of (tree, extent) pairs, which we unzip into two lists. All the subtrees’ roots will
be at position zero. Next fit the extents together using fitlist, giving a list of
displacements in positions. Then move each subtree in trees by its corresponding
displacement in positions to give ptrees, and do the same for the extents to give
pextents. Finally calculate the resulting extent and resulting tree with its root at
position 0. That’s it!

Figure 5 shows a realistic example, in family tree form with all connecting lines
horizontal or vertical. Incidentally, the PostScript used to produce these diagrams
was generated by a back-end ML program.

6 Correctness

In contrast with previous algorithms which solve the tree-drawing problem using
an imperative language, it is clear from the ML code that our aesthetic rules are
not broken. Consider them each in turn.

1. The function fit ensures that the positioning of tree extents by fitlistl,
fitlistr and fitlist places nodes at least a scale unit apart. A formal proof
would entail showing that if the nodes are listed in breadth-first order then
the positions x1, . . . , xn at any level have the property that for 1 ≤ i < n,
xi + 1 ≤ xi+1.

2. From the symmetry in the definitions of fitlistl and fitlistr it can be
seen that if the positions assigned by fitlistl range between 0 and x then
the positions assigned by fitlistr will range between −x and 0. Hence when
these are averaged by fitlist the parent (at position 0) will be centred above
its children. This could be proved formally without much trouble; to do the
same for imperative code would be much harder.



Functional pearls 533

A

B

C

D

E F

G

H

I

J

K

L

M

N

O

Fig. 6. A pathological case

It is possible to use integer values instead of reals if we are not concerned about
truncation errors causing this rule to be broken. Alternatively, we can set the
minimum separation between subtrees to 2n−1, where n is the maximum
depth of the tree. A pathological case, where we really do need a separation
value of 2n−1, is illustrated in Figure 6, scaled appropriately.

3. The mirror image property is forced by taking the mean of left and right-
biased positionings of subtrees. We are asking for the following equation to
be satisfied:

For all trees t, design t = reflect(reflectpos(design(t)))

where reflect is a function which reflects a tree structurally, and reflectpos

is a function which reflects the node positions about zero. They are defined
as follows:

fun reflect (Node(v, subtrees)) =

Node(v, map reflect (rev subtrees))

fun reflectpos (Node((v,x : real), subtrees)) =

Node((v,~x), map reflectpos subtrees)

Again this could be proved formally using equational reasoning and structural
induction, as described in any good text on functional programming (Paulson,
1991; Bird and Wadler, 1988).

4. The subtree consistency property is evident from the recursive nature of the
algorithm. A recursive application of design’ is used to draw the subtrees,
and the subsequent manipulation using movetree does not affect their phys-
ical structure.

The tree designed could be no narrower without violating these rules because
fitlist fits extents together as tightly as possible without distorting the shapes
of the subtrees but leaving a gap of at least one unit between adjacent nodes.



534 Andrew J. Kennedy

7 Complexity

The program as presented uses O(n2) time in the worst case, where n is the number
of nodes in the tree. Fortunately it is possible to transform the program to a linear-
time one with some loss of clarity.

The inefficiency arises in the representation of extents. Moving a tree uses con-
stant time, due to the use of relative positions, but moving an extent uses linear time
because it is represented using absolute positions. Changing to relative positions
would reduce the complexity of mergelist from quadratic to linear. Unfortunately
the functions fit and merge become rather less elegant, though it is an easy exer-
cise to define them. They are also good candidates for formal derivation (Gibbons,
1991; Gibbons, 1996).

Acknowledgements

I am grateful to Nick Benton for several fruitful discussions, and to one of the
referees whose comments helped improve the presentation of this paper.

References

R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall, 1988.
J. Gibbons. Algebras for Tree Algorithms. DPhil thesis, Oxford University Computing

Laboratory, 1991.
J. Gibbons. Deriving tidy drawings of trees. Journal of Functional Programming, this

issue.
R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, Cam-

bridge, Mass., 1989.
L. C. Paulson. ML for the Working Programmer. Cambridge University Press, 1991.
G. M. Radack. Tidy drawing of M-ary trees. Technical Report CES-88-24, Department of

Computer Engineering and Science, Case Western Reserve University, Cleveland, Ohio,
November 1988.

E. M. Reingold and J. S. Tilford. Tidier drawings of trees. IEEE Transactions on Software
Engineering, SE-7(2):223–228, March 1981.

J. G. Vaucher. Pretty-printing of trees. Software—Practice and Experience, 10:553–561,
1980.

J. Q. Walker II. A node-positioning algorithm for general trees. Software—Practice and
Experience, 20(7):685–705, July 1990.

C. Wetherell and A. Shannon. Tidy drawings of trees. IEEE Transactions on Software
Engineering, SE-5(5):514–520, September 1979.


