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INTRODUCTION 

The purpose of this paper is to describe a 
program now in existence which is capable of 
solving a wide class of the so-called 'geometric-
analogy' problems frequently encountered on 
intelligence tests. Each member of this class of 
problems consists of a set of labeled line draw­
ings. The task to be performed can be concisely 
described by the question: 'figure A is to figure 
B as figure C is to which of the given answer 
figures?' For example, given the problem illus-
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Figure 1. 

trated as Fig. 1, the geometric-analogy program 
(which we shall subsequently call ANALOGY, 
for brevity) selected the problem figure labeled 
4 as its answer. It seems safe to say that most 
people would agree with ANALOGY'S answer 
to this problem (which, incidentally, is taken 
from the 1942 edition of the Psychological Test 

for College Freshmen of the American Council 
on Education). Furthermore, if one were re­
quired to make explicit the reasoning by which 
he arrived at his answer, prospects are good 
that the results would correspond closely to the 
description of its 'reasoning' produced by 

ANALOGY. 

At this point, a large number of questions 
might reasonably be asked by the reader. Four, 
in particular, are: 

(i) Why were problems of this type chosen 
as subject matter? 

(ii) How does ANALOGY go about solving 
these problems? 

(iii) How competent is ANALOGY at its sub­
ject matter, especially in comparison to human 
performance ? 

(iv) What has been learned in the construc­
tion of ANALOGY and what implications might 
this study have for the further development of 
problem-solving programs in general ? 

The remainder of this paper constitutes an 
attempt to answer these questions in some de­
tail. We first deal with a variety of motivations 
for this investigation and attempt to place it in 
the context of other work in related areas. Next 
we turn to detailed consideration of the problem 
type and of the mechanism of the ANALOGY 
program. Finally, we present some answers to 
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the remaining two questions raised above. (A 
more detailed discussion of all these issues can 
be found in Ref. 1). 

Motivations and Background 

In our opinion ample general justification for 
the development and study of large heuristic 
problem-solving programs has been provided 
(both through argument and through example) 
by previous workers in this area. We shall not 
attempt to add to it. Given that one is inter­
ested in the construction of such programs, a 
number of reasons can be advanced for the 
choice of geometric-analogy problems as a suit­
able subject matter. Some of these are: 

(i) Problems of this type require elaborate 
processing of complex line drawings: in par­
ticular, they require an analysis of each picture 
into parts and the determination and use of 
various relationships among these parts. This 
is an interesting problem per se and one which 
can reasonably be expected to be of great prac­
tical importance in the near future. 

(ii) The form of the problems requires one to 
find a transformation that takes figure A into 
figure B and takes figure C into exactly one of 
the answer figures. This situation provides a 
natural opportunity for trying out certain ideas 
about the use of explicit internal 'descriptions' 
(here, of both figures and transformations) in 
a problem-solving program. Furthermore, more 
speculatively, it presents an interesting para­
digm of 'reasoning by analogy,' a capacity 
which may play a large role in far more sophis­
ticated problem-solving programs in the future. 
(In Section 5 we discuss the possible relevance 
of ANALOGY to the introduction into problem-
solving programs of more powerful learning 
mechanisms than have yet been achieved.) 

(iii) Problems of this type are widely re­
garded as requiring a considerable degree of 
intelligence for their solution and in fact are 
used as a touchstone of intelligence in various 
general intelligence tests used for college ad­
mission and other purposes. This suggests a 
non-trivial aspect of any attempt to mechanize 
their solution. 

We shall now attempt very briefly to place 
ANALOGY in the context of earlier work in re­

lated areas. Two aspects of ANALOGY must 
be considered: 

(i) ANALOGY contains a substantial amount 
of machinery for the processing of representa­
tions of line drawings, including decomposition 
into subfigures, calculation of relations between 
figures, and 'pattern-matching' computations. 
Thus we must relate it to other work in picture 
processing and pattern recognition. 

(ii) ANALOGY is a complex heuristic prob­
lem-solving program, containing an elaborate 
mechanism for finding and 'generalizing' trans­
formation rules. Thus we must relate it to other 
work on the development of problem-solving 
programs. 

We turn first to the picture-processing aspect. 
The essential feature of the treatment of line 
drawings by ANALOGY is the construction, 
from relatively primitive input descriptions, of 
more 'abstract' descriptions of the problem fig­
ures in a form suitable for input to the rule-
finding program. The fundamental program­
ming technique underlying this method is the 
use of a list-processing language, in this case 
LISP,2-3 to represent and process the figures in 
question. Work in picture processing, for pat­
tern-recognition purposes, involving some ele­
ments of description, is found in Grimsdale et 
al.,4 Marill et al.f

a and Sherman,0 among others. 
Sutherland7 and Roberts8 have used, for quite 
different purposes, internal representations of 
line drawings similar in some respects to those 
used in ANALOGY. Kirsch9 has worked with 
complex line drawings primarily as a vehicle 
for programs involving the analysis of English-
language sentences pertaining to such pictures. 
Hodes10 and Canaday11 have used LISP expres­
sions for figure description in much the same 
way that we have, though the development of 
machinery for manipulating such descriptions 
was, of necessity, carried much further in 
ANALOGY. Evidently the first advocacy of 
'scene description' ideas (for use in pattern 
recognition) occurs in Minsky.1-

To place ANALOGY with respect to other 
work with problem-solving programs, we shall 
simply list a number of developments in the con­
struction of problem-solving programs which 
have influenced, in a general way, our approach 
to the design of ANALOGY. These include LT 
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(the Logic Theorist) ,3 and, more recently, GPS 
(the General Problem Solver)14 of Newell, 
Simon, and Shaw, the plane-geometry theorem-
pro ver15 of Gelernter and Rochester, and 
SAINT, the formal integration program of 
Slagle.10 

Summary of the Solution Process, 
with Example 

To exhibit as clearly as possible the entire 
process carried out by ANALOGY, we now 
sketch this process, then examine its operation 
on an example. The sample problem we shall be 
considering is shown as Fig. 2 (where the Pi's 
are not part of the problem figures but labels 
keying the corresponding parts of the figures to 

Figure 3a. 

cases, including the example to be discussed be­
low, was quite simple. It merely separated a 
problem figure into its connected subfigures; 
e.g., figure A of the above example consists of 
the three objects labeled PI, P2, and P3. It 
later became desirable to have a more sophisti-
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expressions we shall give below). Before treat­
ing the example, we shall summarize the entire 
solution process. Given a problem such as that 
above, ANALOGY proceeds as follows: First, 
the input descriptions of the figures are read. 
Currently these descriptions, given as LISP ex­
pressions in a format to be illustrated below, 
are hand-made; however, they could well be 
mechanically generated from scanner or light-
pen input by a relatively straightforward, quite 
'unintelligent' program embodying line-tracing 
techniques already described in the literature. 
The descriptions represent the figures in terms 
of straight line segments and arcs of circles tto 
any desired accuracy, at the cost of longer and 
longer expressions). Examples of the descrip­
tions are given below. 

The first step taken by ANALOGY is to de­
compose each problem figure into 'objects' (sub-
figures) . The decomposition program originally 
written, which was sufficient to handle many 

Figure 3b. 

cated decomposition program with, in particu­
lar, the capability of separating overlapped 
objects on appropriate cues. For example, sup­
pose problem figure A is as in Fig. 3a and figure 
B is as in Fig. 3b. The decomposition program 
should be able to separate the single object of 
figure A into the triangle and rectangle on the 
basis that they appear in figure B, from which 
point the remaining mechanism of parts I and 
II could proceed with the problem. While a de­
composition program of the full generality de­
sirable has not yet been constructed, the most 
recent version of the program is capable, in par­
ticular, of finding all occurrences of an arbi­
trary simple closed figure x in an arbitrary 
connected figure y; for each such occurrence the 
program can, if required, separate y into two 
objects: that occurrence of x and the rest of y 
(described in the standard figure format—note 
that this 'editing' can be rather complex: con­
nected figures can be split into non-connected 
parts, etc.). 
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The type of decomposition illustrated above 
might be called 'environmental,' in that, e.g., 
figure A is separated into subfigures on the in­
formation that these subfigures are present, 
already separated, in figure B. An interesting 
extension to the present part I of ANALOGY 
might be to incorporate some form of 'intrinsic' 

h 
Figure 4a. 

decomposition in which 'most plausible' decom­
positions are generated according to Gestalt-
like criteria of 'good figure.' Such an extension 
could widen the problem-solving scope of 
ANALOGY considerably to include many cases 
where the appropriate subfigures do not appear 
already 'decomposed' among the problem fig­
ures. For example, suppose problem figures A 
and B are as shown in Figs. 4a and 4b, respec-
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Figure 4b. 

tively. A decomposition into the square, trian­
gle, and circle seems necessary to state a rea­
sonable transformation rule. This example, in­
cidentally, illustrates one potentially useful 
'intrinsic' decomposition heuristic: roughly, 
choose decompositions into subfigures which 
have as much internal symmetry (in some pre­
cise sense) as possible. 

Next, the 'objects' generated from the decom­
position process are given to a routine which 
calculates a specified set of properties of these 
objects and relations among them. The program 
is designed so that this set can be changed 
easily. As a sample of a relation-calculating 
subroutine, we cite one that calculates, for fig­
ure A of our example, that the object labeled 
P2 lies inside that labeled P3 and generates a 
corresponding expression (INSIDE P2 P3) to 
be added to the part I output description of fig­
ure A. The method used involves calculating all 
intersections with P3 of a line segment drawn 
from a point on P2 to the edge of the field (all 
figures are considered as drawn on a unit 
square). In this case P2 lies inside P3 since the 
number of such intersections is odd, namely one 
(and P3 is known to be a simple closed curve— 
if it were not, the calculation just described 
would be performed for each closed curve con­
tained in P3). To do this, a substantial reper­
toire of 'analytic geometry' routines is required 
for part I, to determine, for example, intersec­
tions of straight line segments and arcs of 
circles in all cases and combinations. Other re­
lation routines available in part I calculate, for 
example, that in figure A of our example PI 
is above P2 and P3 and in figure B that P4 is to 
the left of P5. 

The principal business of part I, aside from 
decomposition and the property and relation 
calculations, is a set of 'similarity' calculations. 
Here, part I determines, for each appropriate 
pair of objects, all members from a certain class 
T of transformations which carry one object of 
the pair into the other. The elements of T are 
compositions of Euclidean similarity transfor­
mations (rotation and uniform scale change) 
with horizontal and vertical reflections. Given 
descriptions of virtually any pair of arbitrary 
line-drawings x and y, the routines of part I 
will calculate the parameters of all instances of 
transformations from T that 'map' x into y. 



A HEURISTIC PROGRAM TO SOLVE GEOMETRIC-ANALOGY PROBLEMS 331 

More precisely, an acceptable 'map' is a member 
of T for which T(x) is congruent to y up to 
certain metric tolerances which are parameters 
in the corresponding programs. 

This routine is, in effect, a pattern-recogni­
tion program with built-in invariance under 
scale changes, rotations, and certain types of 
reflections. It consists essentially of a topologi­
cal matching process, with metric comparisons 
being made between pairs of lines selected by 
the topological process. In Ref. 6 Sherman in­
troduced some topological classification into a 
sequential decision tree program for the recog­
nition of hand-printed letters, but the notfon of 
systematically using the topological informa­
tion to determine which metric comparisons are 
to be made seems to be new. This type of organ­
ization for pattern recognition has its own ad­
vantages (e.g., flexibility—the metric parts can 
be changed easily with no effect on the overall 
structure) and difficulties (e.g., sensitivity to 
metrically small changes in a figure which affect 
the connectivity—but this sensitivity can be 
largely removed by suitable pre-processing). 
Incidentally, it may be worth noting that if we 
suppress the metric comparisons entirely we 
get a general, and reasonably efficient, topo­
logical equivalence algorithm for graphs (net­
works) . 

The set of techniques we have just been 
describing, based on the use of a list-processing 
language to perform processing of line drawings 
by manipulating their list-structured descrip­
tions, is by no means limited in applicability to 
the uses to which we have put it in part I of 
ANALOGY. To the contrary, it is our view that 
the representation of line drawings used here 
and the corresponding processing routines form 
a suitable basis for the development of a quite 
powerful 'line-drawing-manipulation language' 
with potential usefulness in a wide variety of 
applications. Regardless of whether the present 
investigation turns out to have a measurable 
influence on the art of designing problem-solv­
ing programs, it seems probable that the prin­
cipal short-range contribution of ANALOGY 
is in the picture-processing by-products just 
described. (Incidentally, these techniques were 
discussed briefly from an ANALOGY-independ-
ent point of view in Ref. 17.) 

After the similarity information is computed 
for every required pair of objects, both within 
a problem figure and between figures, this in­
formation, together with the decomposition and 
property and relation information, is punched 
out on cards in a standard format for input to 
part II. (For a typical set of figures, the total 
output of part I, punched at up to 72 columns/ 
card, might come to 15 to 20 cards.) 

Part II is given these cards as input. Its 
final output is either the number of the solution 
figure or a statement that it failed to find an 
answer. Its first step is to generate a rule (or, 
more frequently, a number of alternate rules) 
transforming figure A into figure B. Such a 
rule specifies how the objects of figure A are 
removed, added to, or altered in their properties 
and their relations to other objects to generate 
figure B. Once this set of rule possibilities has 
been generated, the next task is to 'generalize' 
each rule just enough so that the resulting rules 
still take figure A into figure B and now take 
figure C into exactly one of the answer figures. 
More precisely, for each 'figure A -» figure B' 
rule and for each answer figure, part II at­
tempts to construct a 'common generalization' 
rule which both takes figure A into figure B and 
figure C into the answer figure in question. This 
process may produce a number of rules, some 
very weak in that virtually all the distinguish­
ing detail has been 'washed out' by 'generaliza­
tion.' Hence it is necessary at this point to pick 
the 'strongest' rule by some means. This entire 
process requires a complex mechanism for ma­
nipulating and testing the rules and deciding 
which of the several rule candidates, the results 
of different initial rules or of different 'general­
izations,' is to be chosen. 

The principal method embodied in part II at 
present is able to deal quite generally with prob­
lems in which the numbers of parts added, re­
moved, and matched in taking figure A into 
figure B are the same as the numbers of parts 
added, removed, and matched, respectively, in 
taking figure C into the answer figure. A sub­
stantial majority of the questions on the tests 
we have used are of this type, as is our present 
example; virtually all would be under a suffi­
ciently elaborate decomposition process in part 
I ; this restriction still permits a wide variety o^ 
transformation rules. It should be mentioned 
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that the methods of part II have been kept 
subject-matter free; no use is made of any geo­
metric meaning of the properties and relations 
appearing in the input to part II. 

The more detailed workings of both parts I 
and II are best introduced through examining 
the process sketched above at work on our ex­
ample. To convey some further feeling for the 
nature of the input to part I, we exhibit part of 
it, namely, the input description of figure A. 
The LISP expressions look like: 

( 
(DOT (0.4 . 0.8)) 

(SCC ((0.3 . 0.2) 0.0 (0.7 . 0.2) 0.0 (0.5 . 
0.7)0.0(0.3.0.2))) 

(SCC ((0.4 . 0.3) 0.0 (0.6 . 0.3) 0.0 (0.6 . 
0.4) 0.0 (0.4 . 0.4) 0.0 (0.4 . 0.3))) 

) 

The first line above corresponds to the dot (at 
coordinates x = 0.4 and y = 0.8 on the unit 
square; the coordinate pairs in the other ex­
pressions are interpreted analogously). The 
next two lines correspond to the triangle (SCC 
stands for simple closed curve. All connected 
figures are divided into three classes—dots 
(DOT), simple closed curves (SCC), and all 
the rest (REG). This is solely for reasons of 
programming convenience; no other use is made 
of this three-way classification). Each non-
connected figure is represented simply by a list 
of descriptions of its connected parts. 

A curve (which may consist of an arbitrary 
sequence of elements chosen from straight line 
segments and arcs of circles) is represented by 
a list in which coordinate pairs alternate with 
the curvatures of the line elements between (all 
curvatures are zero here since the lines in ques­
tion are all straight). Similarly, the next two 
lines above correspond to the rectangle; the en­
tire description of figure A is then a list of the 
descriptions of these three parts. The format 
corresponding to the non-SCC figures like the 
Z-shaped subfigure of figure C is similar though 
somewhat more complex; it looks like: 

(REG ((VI V2 (0.0 (0.55 . 0.5) 0.0 (0,45 . 
0.3) 0.0)) 

(V2 VI (0.0 (0.45 . 0.3) 0.0 (0.55 . 0.5) 
0.0)))) 

where VI and V2 are the two vertices (here, 
endpoints) of the figure. The coordinates of VI 
and V2 are given to part I in a separate list. 
They are VI = (0.45 . 0.5), V2 = (0.55 . 0.3). 
Here, the top-level list describes the connectiv­
ity by stating which vertices are connected to 
which and how often—sublists describe in de­
tail the curves making these connections. (By 
vertex we mean either an endpoint of a curve 
or a point at which three or more curves come 
together.) The complete details of the input 
format are given in Ref. 1, along with many 
examples. 

When the input shown above corresponding 
to problem figure A and the corresponding 
inputs for the other seven figures are processed, 
the output from part I is, in its entirety, the ten 
LISP expressions shown below. For brevity, 
all similarity information concerning non-null 
reflections has been deleted. Also, we have re­
placed the actual arbitrary symbols generated 
internally by ANALOGY as names for the parts 
found by the decomposition program by the 
names PI, P2, etc., which appear as labels on 
our example figures above. The ten output ex­
pressions are: 

(1) ( (PI P2 P3) . ((INSIDE P2 P3) 

(ABOVE PI P3) (ABOVE PI P2))) 

(2) ((P4 P5) . ((LEFT P4 P5))) 

(3) ((P6 P7 P8) . ((INSIDE P7 P6) 
(ABOVE P8 P6) (ABOVE P8 
P7))) 

(4) ((P2 P4 (((1.0 . 0.0) . (N.N)) ((1.0 . 
3.14) . (N.N)))) (P3 P5 (((1.0 . 
0.0) . (N.N)) ) ) ) 

(5) ( (PI P8 (((1.0 . 0.0) . (N.N))) ) ) 

(6) NIL 

(7) ( (P9 P10 P l l ) (P12 P13) (P14 P15) 
(P16 P17) (P18) ) 

(8) ( ((INSIDE P10 P9) ABOVE P l l P9) 
(ABOVE P l l P10)) ((LEFT P12 
P13)) ((INSIDE P15 P14)) 
((ABOVE P17 P16)) NIL) 

(9) ( ( ( P 6 P 9 (( (1 .0 .0 .0) . (N.N)))) (P7 
P10 (((1.0 . 0.0) . (N.N)) ((1.0 . 
—3.14) . (N.N)))) (P8P11 (((1.0 
.0.0) . (N.N)) ) ) ) 
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((P6 P13 (((1.0 . 0.0) . (N.N)))) 
(P7 P12 (((1.0 . 0.0) . (N.N)) 
((1.0 .—3.14) . (N.N))) ) ) 

((P6 P14 (((1.0 . 0.0) . (N.N)))) 
(P7 P15 (((1.0 . 0.0) . (N.N)) 
((1.0 .—3.14) . (N.N)) ) ) ) 

((P6 P16 (((1.0 . 0.0) . (N.N)))) 
(P8 P17 (((1.0 . 0.0) . (N.N)) ) ) ) 

((P7 P18 (((1.0 . 0.0) . (N.N)) ((1.0 . 
—3.14) . (N.N.))))) ) 

(10) ( ( ( (P1P11 ( ( (1 .0 .0 .0) . (N.N)) ) ) ) 
NIL NIL 

( (PI P17 (((1.0 . 0.0) . (N.N)) ) ) ) 
NIL ) . (NIL NIL NIL NIL NIL) ) 

To explain some of this: The first expression 
corresponds to figure A. It says figure A has 
been decomposed into three parts, which have 
been given the names PI, P2, and P3. Then we 
have a list of properties and relations and simi­
larity information internal to figure A, namely, 
here, that P2 is inside P3, PI is above P2, and 
PI is above P3. The next two expressions give 
the corresponding information for figures B 
nns l (~* TH-./-* -P<-»i•!•»•+Vi o v n v f i o o i n n rriiTQo lTi-fAJMnatinn ClllKX \j. x l i e I U U I i/ii C A p i r a o i u i i g u v o nixvyA m u n u n 

about Euclidean similarities between figure A 
a n u n g u r e x>. r u r eAampie, JTO gues IIILO r u 
under a 'scale factor = 1, rotation angle = 0, 
and both reflections null' transformation. The 
next two expressions contain the corresponding 
information between figure A and figure C and 
between figure B and figure C, respectively. The 
seventh list is a five-element list of lists of the 
parts of the five answer figures; the eighth a 
five-element list of lists, one for each answer 
figure, giving their property, relation, and simi­
larity information. The ninth is again a five-
element list, each a 'similarity' list from fig­
ure C to one of the answer figures. The tenth, 
and last, expression is a dotted pair of expres­
sions, the first again a five-element list, a 'simi­
larity' list from figure A to each of the answer 
figures, the second the same from figure B to 
each of the answer figures. This brief descrip­
tion leaves certain loose ends, but it should pro­
vide a reasonably adequate notion of what is 
done by part I in processing our sample prob­
lem. 

The ten expressions above are given as argu­
ments to the top-level function of part II 

(optimistically called solve). The basic method 
employed by solve, which suffices to do this 
problem, begins by matching the parts of fig­
ure A and those of figure B in all possible ways 
compatible with the similarity information. 
From this process, it concludes, in the case in 
question, that P2 -» P4, P3 -» P5, and PI is 
removed in going from A to B. (The machinery 
provided can also handle far more complicated 
cases, in which alternate matchings are possible 
and parts are both added and removed.) On 
the basis of this matching, a statement of a 
rule taking figure A into figure B is generated. 
It looks like: 

( 

(REMOVE Al ((ABOVE Al A3) (ABOVE 
Al A2) (SIM OB3 Al (((1.0 . 0.0) . 
(N.N)))))) 

(MATCH A2 (((INSIDE A2 A3) (ABOVE 
Al A2) (SIM OB2 A2 (((1.0 . 0.0) . 
(N.N)) ) ) ) . ((LEFT A2 A3) (SIM 
OB2 A2 (((1.0 . 0.0) . (N.N)) ((1.0 . 
3.14) . (N.N)))) (SIMTRAN (((1.0 . 
0.0) . (N.N)) ((1.0 . 3.14) . (N.N) 
) ) ) ) ) ) 

(MATCH A3 (((INSIDE A2 A3) (ABOVE 
Al A3) (SIM OBI A3 (((1.0 . 0.0) . 
(N.N)) ) ) ) . ((LEFT A2 A3) (SIM 
OBI A3 (((1.0 . 0.0) . (N.N)))) 
(SIMTRAN (((1.0 . 0.0) . (N.N) 
) ) ) ) ) ) 

) 

The A's are used as 'variables' representing 
objects. The format is rather simple. For each 
object added, removed, or matched, there is a 
list of the properties, relations and similarity 
information pertaining to it. (In the case of a 
matched object, there are two such lists, one 
pertaining to its occurrence in figure A and the 
other to its occurrence in figure B.) There are 
two special devices; the (SIM OBI . . . ) — form 
expressions give a means of comparing types of 
objects between, say, figure A and figure C; the 
other device is the use of the SIMTRAN expres­
sions in the figure-B list for each matched ob­
ject. This enables us to handle conveniently 
some additional situations which we shall omit 
from consideration, for brevity. They are 
treated in detail in Ref. 1. 
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The above rule expresses everything about 
figures A and B and their relationship that is 
used in the rest of the process. (The reader 
may verify that the rule does, in some sense, 
describe the transformation of figure A into 
figure B of our example.) 

Next, a similarity matching is carried out be­
tween figure C and each of the five answer fig­
ures. Matchings which do not correspond to the 
ones between figure A and figure B in numbers 
of parts added, removed, and matched, are dis­
carded. If all are rejected this method has 
failed and solve goes on to try a further method. 
In the present case, figures 1 and 5 are rejected 
on this basis. However, figures 2, 3, and 4 pass 
this test and are examined further, as follows. 
Choose an answer figure. For a given matching 
of figure C to the answer figure in question 
(and solve goes through all possible matchings 
compatible with similarity) we take each 'fig­
ure A -> figure B' rule and attempt to fit it to 
the new case, making all matchings between the 
A's of the rule statement and the objects of 
figure C and the answer figures which are com­
patible with preserving add, remove, and match 
categories, then testing to see which informa­
tion is preserved, thus getting a new, 'general­
ized' rule which fits both 'figure A -> figure B' 
and 'figure C -*• the answer figure in question.' 
In our case, for each of the three possible an­
swer figures we get two reduced rules in this 
way (since there are two possible pairings be­
tween A and C, namely, PI <—* P8, P2<—»P6, 
and P3 <—» P7, or PI <—» P8, P2 «—» P7, and 
P3 «—> P6). 

In some sense, each of these rules provides an 
answer. However, as pointed out earlier, we 
want a 'best' or 'strongest' rule, that is, the one 
that says the most or is the least alteration in 
the original 'figure A -» figure B' rule and that 
still maps C onto exactly one answer figure. A 
simple device seems to approximate human 
opinion on this question rather well; we define 
a rather crude 'strength' function on the rules 
and sort them by this. If a rule is a clear winner 
in this test, the corresponding answer figure 
is chosen; if the test results in a tie, the entire 
method has failed and solve goes on to try 
something else. In our case, when the values 
for the six rules are computed, the winner is one 

of the rules corresponding to figure 2, so the 
program, like all humans so far consulted, 
chooses it as the answer. The rule chosen looks 
like this: 

( 

(REMOVE Al ((ABOVE Al A3) (ABOVE 
Al A2) (SIM OB3 Al (((1.0 . 0.0) . 
(N.N)))))) 

(MATCH A2 (((INSIDE A2 A3) (ABOVE 
A1A2)) . ( (LEFTA2A3) (SIMTRAN 
(((1.0 . 0.0) . (N.N)) ((1.0 . 3.14) . 
( N . N ) ) ) ) ) ) ) 

(MATCH A3 (((INSIDE A2 A3) (ABOVE 
Al A3)) . ( (LEFTA2A3) (SIMTRAN 
(((1.0 . 0.0) . ( N . N ) ) ) ) ) ) ) 

) 

Again, it is easy to check that this rule both 
takes figure A into figure B and figure C into 
figure 2, but not into any of the other answer 
figures. 

Further Examples and Comments 

(a) Examples 
We first exhibit several additional examples 

of problems given to ANALOGY: 

(i) (See Fig. 5) 
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Figure 5. 

Here the rule involves changes in the rela­
tions of the three parts. ANALOGY chose an­
swer figure 3. 

(ii) (See Fig. 6) 
This case involves both addition and removal 

of objects. ANALOGY chose answer figure 2. 

(iii) (See Fig. 7) 
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Note that this case required the more power­
ful decomposition program. Here ANALOGY 
chose figure 3. 

(iv) (See Fig. 8) 
The rule here simply involved a rotation. 

ANALOGY chose figure 2. 

(v) (See Fig. 9) 

Here ANALOGY chose figure 3, using an 
extension of the part II techniques discussed 
above. This extension, employed after failure 
of the basic process, involves systematic substi­
tution of certain specified relations (e.g., LEFT 
for ABOVE) for others in the part II input 
descriptions, thus making it possible for 
ANALOGY to relate the 'vertical' transforma­
tion taking A into B to the 'horizontal' trans­
formation of C into 3. 

(vi) In the problem of Fig. 1, the large circle 
of answer figure 4 was replaced by a large 
square and the problem rerun. Again figure 4 
was chosen but by a different rule. Now, in­
stead of the inner object being removed, as be­

fore, the outer object is removed and the inner 
one enlarged. This illustrates some of the flexi­
bility of the procedure and the dependence of 
the answer choice on the range of allowed an­
swers as well as on A, B, and C. 

(vii) (See Fig. 10) 

Here is an example of a failure by ANAL­
OGY to agree with the human consensus which 
favors figure 5. ANALOGY chose figure 3. 
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(b) Comparison with Human Performance 
We can only roughly compare the perform­

ance of ANALOGY with that of humans on 
geometric-analogy problems, since ANALOGY 
has not yet been given the complete set of such 
problems from any test for which scores are 
available. However, as some indication, we cite 
scores on the ACE tests based on a period of 
years including those editions of the test from 
which most of the problems on which ANAL­
OGY was tested were selected. These scores are 
for a large population of college-preparatory 
students; the median score, on a test consisting 
of- 30 such questions, ranged from 17 for 9th 
grade to 20 for 12th grade. Our estimate is that, 
on the same tests, ANALOGY, as it currently 
exists, could solve between 15 and 20 problems. 
Given, in addition, certain changes (mostly in 
part I, e.g., a more powerful decomposition 
program and additional properties and rela­
tions) for which we have reasonably well-
worked-out implementations in mind, ANAL­
OGY should be capable of perhaps 25 successful 
solutions. 

(c) The Use of LISP 
The use of a list-processing language to con­

struct the ANALOGY program appears to have 
been a suitable choice; most notably, its capa­
bility at handling intermediate expressions of 
unpredictable size and 'shape' (such as our 
figure descriptions and transformation rules) 
is of great value. We especially wish to praise 
LISP as a convenient and elegant language in 
which to write and debug complex programs. 
The ease of composition of routines, the highly 
mnemonic nature of the language, and the good 
tracing facilities all contribute greatly to effec­
tive program construction. In return for the 
use of such a language one pays a certain price 
in speed and storage space, which, in the case of 
ANALOGY, at least, was a very acceptable 
bargain, since the necessity of machine-lan­
guage coding would have made the entire proj­
ect unfeasible. Incidentally, the ANALOGY 
program (apparently the largest program writ­
ten in LISP to date) is so large that parts I 
and II must occupy core separately. The conse­
quent limited (and one-way) communication 
between the parts was a serious design con­
straint but proved to have some compensating 
advantages in simplicity. 

ANALOGY and Pattern-Recognition in 
Problem-Solving Programs 

In this section we shall consider certain 
aspects of the design of problem-solving ma­
chines. To aid this discussion we shall specify 
(rather loosely) a subclass of problem-solving 
machines and carry out our discussion in terms 
of these though the ideas involved are by no 
means limited in applicability to this class. The 
machines we have in mind are typified by 
GPS14 in that the problem to be solved by the 
machine is to transform one specified 'object' or 
'situation' (whatever this may mean in a par­
ticular subject-matter context) into another by 
applying an appropriate sequence of transfor­
mations chosen from a class available to the 
machine. A wide variety of problems may be 
cast in this form (again see Ref. 14 or other dis­
cussions of GPS by the same authors). As in 
GPS, subgoals may be generated and attacked 
by such a machine and elaborate schemes of 
resource allocation may be required. However, 
these aspects do not concern us here. Our inter­
est lies in the basic task of the machine; given a 
pair of 'objects,' it must choose an 'appropriate' 
transformation, i.e., one contributing to the goal 
of transforming one of the given 'objects' into 
the other. 

It is a widely-held view, with which we agree 
completely, that for a machine to be capable of 
highly intelligent behavior on a task of this 
kind, in a rich environment of objects and 
transformations (and, in particular, to be capa­
ble of learning at a level more advanced than 
that of present machines), the critical factor is 
that it have a good internal representation of 
both its subject matter ('objects') and its meth­
ods ('transformations'), as well as an elaborate 
set of 'pattern-recognition' techniques for 
matching transformations to object pairs. 
Probably this means a quite 'verbal' represen­
tation of both objects and transformations as 
expressions in suitable 'description languages.' 
Furthermore, these matching techniques must 
be represented in a form in which they them­
selves are capable of being improved as the ma­
chine gains experience. The central role which 
'pattern-recognition' techniques must play in 
sophisticated problem-solving programs and the 
corresponding importance for effective learning 
of autonomous improvement in the perform-
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ance of these techniques are well expressed in 
Minsky.12 There we find: 

In order not to try all possibilities a re­
sourceful program must classify problem situa­
tions into categories associated with the do­
mains of effectiveness of the machine's different 
methods. These pattern-recognition methods 
must extract the heuristically significant fea­
tures of the objects in question. Again from 
Ref. 12 we have: 

Again from 12 we have: 
In order to solve a new problem one uses 

what might be called the basic learning heuris­
tic—first try using methods similar to those 
which have worked, in the past, on similar 
problems. 

Here, the problem is, of course, to have pat­
tern-recognition techniques possessing, or able 
themselves to learn, criteria of 'similarity' ap­
propriate to the subject matter in question. 

The 'fixed-length property-list' schemes (see 
Ref. 12) which characteristically have been used 
to perform this pattern-recognition task in cur­
rent problem-solving programs have two prin­
cipal defects which limit their extension to 
harder problems: 

(i) While, in principle, given enough suffi­
ciently elaborate properties, one can make arbi­
trarily fine discriminations, in practice a given 
set of properties will begin to fail rapidly as 
situations become more complex. In particular, 
for 'situations' which must be treated as con­
sisting of interrelated parts, the 'global' nature 
of the scheme in question leaves it helpless. 

(ii) Such a scheme is very limited in its learn­
ing capabilities, since it has access to very little 
information about its component properties; in 
particular, it is incapable of "knowledgeably' 
modifying its tests or adding new ones—it can 
only modify the weightings given to the results 
of these tests in its 'decisions.' 

In view of the limitations of the 'property-
list' pattern-recognition scheme just mentioned, 
we can formulate some requirements for a pat­
tern-recognition scheme suitable tc replace it 
as a 'transformation-selecting' mechanism. 
First, the scheme must have access to a repre­
sentation of each 'object' in terms of a 'descrip­
tive framework' for the subject matter in 

question which is suitable in that useful rela­
tionships between 'objects' can be extracted 
relatively simply from the corresponding rep­
resentations. Furthermore, the transformation-
selecting rules of the pattern-recognition appa­
ratus should themselves be expressed in a 
representation suitable for a 'learning mecha­
nism' to revise the set of rules (i) by adding 
new rules and deleting those old ones which 
prove least useful as experience associates cer­
tain object pairs with certain transformations 
and (ii) by replacing a set of particular rules 
by a 'common generalization' rule again repre­
sented in the same language. Such facilities 
could go far toward removing the limitations 
of which we have spoken and providing both a 
powerful rule language (the rules can be stated 
in terms of the 'descriptive framework' we have 
postulated for the 'objects') and a learning 
mode more sophisticated than any yet incorpo­
rated in such a general problem-solving pro­
gram. 

So far we have been enumerating desirable 
features in a 'pattern-recognition' mechanism 
to be used as a transformation-selection device 
within a large problem-solver. What has all 
this to do with ANALOGY, which is not even a 
problem-solving program of the class we have 
been considering? We suggest that ANALOGY 
can, under a suitable (rather drastic) reinter-
pretation, be to some extent viewed as a pattern-
recognition program having, to the limited de­
gree appropriate for its particular environment, 
all the features we have listed. First, the 
'objects' are the problem figures of ANALOGY 
and the suitable 'descriptive framework' ap­
propriate to these objects is the 'subfigure and 
relation' representation used as the input part I 
generates for part II of ANALOGY. (Thus 
part I of ANALOGY corresponds to the appa­
ratus that generates this representation for 
each object; that is, it goes from a representa­
tion of the 'problem objects' which is convenient 
for input to the problem-solver to one which is 
in a form suitable for internal use.) The gen­
eration in ANALOGY of a transformation rule 
taking one answer figure into another can be 
thought of as corresponding to the first kind of 
learning we listed above, namely, the adding of 
rules as, with experience, the machine associates 
certain object pairs with certain simple or com-
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posite transformations. Finally, the common 
generalization of two rules in ANALOGY cor­
responds to the second kind of learning we 
mentioned, namely, the generation of a common 
generalization of several rules associating 'ob­
jects' and 'transformations.' Furthermore, 
ANALOGY'S process of choosing between 'com­
mon generalizations' of different rule pairs mir­
rors a process of selectively incorporating only 
those generalizations with the greatest dis­
criminatory power. Under this interpretation, 
ANALOGY appears as a model for a pattern-
recognition process with all the characteristics 
mentioned. The potential value of ANALOGY, 
viewed in this way, as a suggestive model for 
the construction of such pattern-recognition 
mechanisms for use within problem-solving pro­
grams may prove to be the chief product of our 
work with ANALOGY and the best justification 
for having carried it out. 
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